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Online Learning in Continuous Games

At each round t = 1, 2, . . ., each player i ∈ N B {1, ...,N}
- Plays an action xi

t ∈ X i

- Suffers loss `i(xt) and receives as feedback gi
t B ∇i `

i(xt)

• Joint action of all players x = (xi)i∈N = (xi, x−i)
• `i(·, x−i) is convex and ∇i `

i(xt) is Lipschitz continuous
• Nash equilibrium x?: ∀i ∈ N , ∀xi ∈ X i, `i(xi

?, x−i
? ) ≤ `i(xi, x−i

? )
• Individual regret of agent i:

Regi
T(P i) = max

pi∈P i

T∑
t=1

(
`i(xi

t, x
−i
t ) − `i(pi, x−i

t )︸                    ︷︷                    ︸
cost of not playing pi in round t

)
.

Limitations of Existing Methods

Need for adaptive stepsize

Two players run optimistic gradient with learning rates (ηt) for

`1(x) = −`2(x) = x1x2; X 1 = X 2 = [−4, 8]; x? = (0, 0)

Left: too large
stepsize leads to
divergence

Right: adaptive
method converges
fast without need
for prior tuning
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Need for Dual Averaging update

Feedback should enter the algorithm with equal weight

Assume linear loss and simplex-constrained action set.

• X = {(w1, w2) ∈ �2
+, w1 + w2 = 1}

• Feedback sequence:

[−e1, . . . ,−e1︸         ︷︷         ︸
dT/3e

,−e2, . . . ,−e2︸         ︷︷         ︸
b2T/3c

]

• Algorithm: Adaptive (Optimistic)
Multiplicative Weight Update

0 20 40 60 80 100
Time horizon T

0

10

20

30

R
eg

re
t

Ada-MWU
Ada-OMWU
Ada-MWU-DA
Ada-OMWU-DA

TL;DR

We introduce for learning in continuous games a family of algo-
rithms that are Adaptive, No-regret, Consistent, and Convergent.

Optimistic Dual Averaging
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Y i
t = −η

i
t

t−1∑
s=1

gs
t

Xi
t = Q(Y i

t) = arg min
x∈X i

t−1∑
s=1

〈gi
s, x〉 +

hi(x)
ηi

t

Xi
t+1

2
= arg min

x∈X i
〈gi

t−1, x〉 +
Di(x, Xi

t)
ηi

t

Regularizer hi: 1-strongly convex and C1

Mirror map: Qi(y) = arg maxx∈X i 〈y, x〉 − hi(x)
Bregman divergence: Di(p, x) = hi(p) − hi(x) − 〈∇ hi(x), p − x〉

Energy inequality and adaptive learning rate

Fenchel coupling. F i(p, y) = hi(p) + (hi)∗(y) − 〈y, p〉

Let λi
t = 1/ηi

t, ψ
i
t(pi) = F i(pi,Y i

t), ϕ
i(pi) = hi(pi) − min hi. Then, for

any pi ∈ X i, we have

λi
t+1ψ

i
t+1(pi)︸  ︷︷  ︸

convergence measure

≤ λi
t ψ

i
t(pi)︸︷︷︸− 〈gi

t, X
i
t+1

2
− pi〉︸          ︷︷          ︸

linearized regret

+ (λi
t+1 − λ

i
t)ϕ

i(pi)

+ 〈gi
t − g

i
t−1︸   ︷︷   ︸

gradeint variation

, Xi
t+1

2
− Xi

t+1〉 − λ
i
tD

i(Xi
t+1, X

i
t+1

2
) − λi

tD
i(Xi

t+1
2
, Xi

t)︸                                   ︷︷                                   ︸
distance between successive iterates

Rearranging, we get

∑T
t=1〈g

i
t, X

i
t+1

2
− pi〉 ≤ λi

T+1ϕ
i(pi) +

∑T
t=1

‖gi
t − g

i
t−1‖

2
(i),∗

λi
t

−
∑T

t=2
λi

t−1
8 ‖X

i
t+1

2
− Xi

t−1
2
‖2(i)

Take the adaptive learning rate

ηi
t =

1√
τi +

∑t−1
s=1‖g

i
t − g

i
t−1‖

2
(i),∗

(Adapt)

• τi > 0 can be chosen freely by the player
• ηi

t is thus computed solely based on local information
available to each player

Theoretical Guarantees

No-regret: Playing the algorithm against any bounded feedback se-
quence incurs O(

√
T ) regret.

Consistent: If X i is compact and the action profile x−i
t of all other

players converges to some limit profile x−i
∞, the algorithm itself i con-

verges to best response arg minxi∈X i `i(xi, x−i
∞).

Convergent: When employed by all players, the induced sequence
of play converges to a Nash equlibrium if either
a. The game is strictly variationally stable.
b. The game is variationally stable and hi is (sub)differentiable on all X i.

Variational Stability. A convex game is variationally stable if the
set X? of Nash equilibria of the game is nonempty and

〈V(x), x − x?〉 B
N∑

i=1

〈∇i `
i(x), xi − xi

?〉 ≥ 0 for all x ∈ X , x? ∈ X?.

The game is strictly variationally stable if the inequality holds as
a strict inequality whenever x < X?.
Examples: • Convex-concave zero-sum • Zero-sum polymatrix

Proof sketch for convergence to NE

1. Show that λi
t converges to a finite constant when t → +∞.

2. Under a suitable divergence metric, establish the quasi-Fejér
monotonicity of the iterates with respect to any NE.

3. Derive that ‖Xt+1
2
− Xt‖ → 0 and ‖Xt − Xt−1

2
‖ → 0 as t → +∞.

4. Prove that every cluster point of the sequence of play is a NE
and conclude.

Each player has two pure strategies. P1 (resp. P2) wants to match the pure strategy of
P2 (resp. P3); wheareas P3 wants to match the opposite of the pure strategy of P1.
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Regret minimization does not imply convergence


