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Online Learning in Continuous Games

We introduce for learning in continuous games a family of algo-

Ateachroundt=1,2,..., each playerie N :={1, ..., N} rithms that are Adaptive, No-regret, Consistent, and Convergent.

Optimistic Dual Averaging

- Plays an action x! € X"
- Suffers loss ¢'(x;) and receives as feedback g' := V, £'(x;)

e Joint action of all players x = (x")jen = (X', x7%)
e {'(-,x7") is convex and V; £'(x,) is Lipschitz continuous
e Nash equilibrium x,: ¥i e N, ¥x' € X, £i(x.,x;1) < €i(x, x3)

e Individual regret of agent i: h'(x)
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X' = Q(Y") = argmin Z(gg, X))+ —
xeX! =1 | | 1
D'(x, X))
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Regi(P) = max » ( €(x,x") = £(p',x") ).
=1 e

piePi X', = argmin(g; |, x)+

cost of not playing p' in round ¢

Regularizer h': 1-strongly convex and C!
Mirror map: Q'(y) = arg max, i {(y, x) — h'(x)
Bregman divergence: D'(p, x) = h'(p) — h'(x) — (V I(x), p — x)

Limitations of Existing Methods

Need for adaptive stepsize : : : :
Energy inequality and adaptive learning rate

Two players run optimistic gradient with learning rates (7;) for

£(x) = —2(x) = x'x% X' = X2 =[-4.8]: x, = (0,0) Fenchel coupling. F'(p,y) = h'(p) + (W)*(y) — {y, p)

Let 2! = 1/1., ¥'(p") = F'(p', Y, ¢'(p') = h'(p') — min/k'. Then, for

Left: too large o om=0T =05 | any p' € X', we have
stepsize leads to fvs;age - Ne=1Nt
: 29 7 > —— adaptive ] i i Log (Al I i l l APPSR
divergence ‘- Co A Vi (P) S 49 (p) =<9, X, — ) + (A — @' (P)
Right: adaptive 7N [ \\ % CONVETJEnce medsure linearized regret
method converges ~ of| | ¥/ AN T +{(;,—¢g,_, X - X.)—-A4DX X ) —-ADX , X))
fast without need \ Nl [ e | 2 | — 3 g I+3 A
for prior tuning _4 S | gradeint variation distance between successive iterates
-4 0 - 8 4 2 0 2 Rearranging, we get
Need for Dual Averaging update o o g — g2 o |
SEKgh X =Py S A fph + B, ——— 0 - T S - X2
=1\ A0 T P S A PAP =1 A =28 101 21l

Feedback should enter the algorithm with equal weight

Take the adaptive learning rate

Assume linear loss and simplex-constrained action set.

1
o X ={(wy,un) € ]R%_, w; + w, = 1} 30 —— Ada-MWU I = : _ : :
v+ X0g) = g1
e Feedback sequence: — Ada-OMWU s=119t = 911l
..CT.) 20 7 Ada-MWU-DA .
e, —en e, .. e 5 Ada-OMWU-DA e 7/ > 0 can be chosen freely by the player
[T/31 27 /3] Y . . .
10 e 77, Is thus computed solely based on local information
e Algorithm: Adaptive (Optimistic) available to each player
Multiplicative Weight Update 0
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Theoretical Guarantees

No-regret: Playing the algorithm against any bounded feedback se-
quence incurs O( VT) regret.

Consistent: If X' is compact and the action profile x;* of all other
players converges to some limit profile x/, the algorithm itself i con-
verges to best response arg min ;_ i £'(x', X2).

Convergent: When employed by all players, the induced sequence
of play converges to a Nash equlibrium if either

a. The game is strictly variationally stable.
b. The game is variationally stable and /' is (sub)differentiable on all X".

Variational Stability. A convex game is variationally stable if the
set X, of Nash equilibria of the game is nonempty and

N
(V(X),X — X, ) .= Z(V,- £(x), x' — xi() >0 forallxe X, x, € A,.
i=1

The game is strictly variationally stable if the inequality holds as
a strict inequality whenever x ¢ A,..

Examples: e Convex-concave zero-sum e Zero-sum polymatrix

Proof sketch for convergence to NE

1. Show that 2! converges to a finite constant when r — +co.

2. Under a suitable divergence metric, establish the quasi-Fejér
monotonicity of the iterates with respect to any NE.

3. Derive that HXH% - X/|| = 0 and ||X; — Xt_%H — 0ast— +oo.

4. Prove that every cluster point of the sequence of play is a NE
and conclude.

— Regret minimization does not imply convergence

Each player has two pure strategies. P1 (resp. P2) wants to match the pure strategy of
P2 (resp. P3); wheareas P3 wants to match the opposite of the pure strategy of P1.
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