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Online learning in games: Setup

At each round t = 1,2, . . ., each player i ∈ N ∶= {1, ...,N}
- Plays an action xit ∈ X i

- Suffers loss `i(xt) and receives as feedback git ∶= ∇i `i(xt)

● Each player i has a convex closed action set X i and a loss
function `i∶X 1 × . . . ×XN → R

● Joint action of all players x = (xi)i∈N = (xi,x−i)
● `i(⋅,x−i) is convex and ∇i `i(xt) is Lipschitz continuous
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Online learning in games: Nash equilibrium and Regret

● Nash equilibrium x⋆: for all i ∈ N and all xi ∈ X i, `i(xi⋆,x−i⋆ ) ≤ `i(xi,x−i⋆ )
- Hard to compute in general
- The players only knows the game via gradient feedback

● Individual regret of player i:

RegiT (P i) = max
pi∈Pi

T

∑
t=1

( `i(xit,x−it ) − `i(pi,x−it )
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

cost of not playing pi in round t

).

No regret if RegiT (P i) = o(T ).
● Nash equilibrium leads to no regret but the converse is more delicate
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Limitations of existing (optimistic) methods

Fast convergence of sequence of play is mostly proved for suitably tuned learning rates

● Two-player planar bilinear zero-sum game

`1(x) = −`2(x) = x1x2 where X 1 = X 2 = [−4,8]

● The two players play optimistic gradient (OG)
with constant stepsize η = 0.5 and T = 100

OG converges in bilinear zero-sum games

Property
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● Two-player planar bilinear zero-sum game

`1(x) = −`2(x) = x1x2 where X 1 = X 2 = [−4,8]

● The two players play optimistic gradient (OG)
with constant stepsize η = 0.7 and T = 100

This only holds when η is small enough
Problem
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Limitations of existing (optimistic) methods

Fast convergence of sequence of play is mostly proved for suitably tuned learning rates

● Two-player planar bilinear zero-sum game

`1(x) = −`2(x) = x1x2 where X 1 = X 2 = [−4,8]

● The two players play optimistic gradient (OG)
with decreasing stepsize ηt = 1/

√
t and T = 100

ηt ∝ 1/
√
t → slow convergence

Solution?
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Limitations of existing (optimistic) methods

Fast convergence of sequence of play is mostly proved for suitably tuned learning rates

● Two-player planar bilinear zero-sum game

`1(x) = −`2(x) = x1x2 where X 1 = X 2 = [−4,8]

● The two players play optimistic gradient (OG)
with adaptive stepsize and T = 100

Adaptive learning ← focus of the work
Solution
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Limitations of existing (optimistic) methods

Mirror descent type methods with dynamic learning rates may incur regret

Assume that player 1 has a linear loss and simplex-constrained action set.

● X 1 = ∆1 = {(w1,w2) ∈ R2
+,w1+w2 = 1}

● Feedback sequence:

[−e1, . . . ,−e1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

⌈T /3⌉

,−e2, . . . ,−e2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

⌊2T /3⌋

]

● Adaptive (Optimistic) Multiplicative
Weight Update

0 20 40 60 80 100
Time horizon T

0

10

20

30

R
eg

re
t

Ada-MWU
Ada-OMWU

(Example from [Orabona and Pal 16])
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Limitations of existing (optimistic) methods

Mirror descent type methods with dynamic learning rates may incur regret

● Cause: new information enters MD with a decreasing weight
● Solution: enter each feedback with equal weight
E.g. Dual averaging or stabilization technique

x5

η2g1 η3g2 η4g3
η5g4

MD-type update

x5

η4g1 η4g2 η4g3
η4g4

DA-type update
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⌊2T /3⌋

]

● Adaptive (Optimistic) Multiplicative
Weight Update with Dual Averaging
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Contributions

We introduce a family of algorithms that are

● Adaptive: they do not require any prior tuning or knowledge of the game.

● No-regret: they achieve O(
√
T ) individual regret against arbitrary opponents.

● Consistent: they converge to the best response against convergent opponents.
● Convergent: if employed by all players in a monotone/variationally stable game, the
induced sequence of play converges to Nash equilibrium.
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Optimistic Dual Averaging (OptDA)

Xi
t = arg min

x∈X i

t−1

∑
s=1

⟨gis, x⟩ +
hi(x)
ηit

= Q(−ηit
t−1

∑
s=1

gst

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Y i
t

), Xi
t+ 1

2
= arg min

x∈X i

⟨git−1, x⟩ +
Di(x,Xi

t)
ηit

X

Y

∇h Q

−g1
−g2

×η2

×η3

X1 = x1
X2 X3

Y1 = 0

Y2
Y3

Regularizer hi: 1-strongly convex and C1

Mirror map: Qi(y) = argmax
x∈X i

⟨y, x⟩ − hi(x)
Bregman divergence:
Di(p, x) = hi(p) − hi(x) − ⟨∇hi(x), p − x⟩

● Play xt =Xt+ 1
2

and receive feedback gt

● Accumulate gradient and compute Xt+1,Xt+ 3
2
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Regularizer hi: 1-strongly convex and C1

Mirror map: Qi(y) = argmax
x∈X i

⟨y, x⟩ − hi(x)
Bregman divergence:
Di(p, x) = hi(p) − hi(x) − ⟨∇hi(x), p − x⟩

● Play x3 =X 7
2

and receive feedback g3

● Accumulate gradient and compute X3, X 7
2
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Optimistic Dual Averaging: Examples

● OG-OptDA ▸ X i convex closed ▸ hi(x) = ∥x∥22
2

▸ Q: Euclidean projection ΠX

Xi
t = ΠX (−ηit

t−1
∑
s=1

gst ), Xi
t+ 1

2

= ΠX (Xi
t − ηitgit−1)

● Stabilized OMWU ▸ X i = ∆di−1 ▸ hi(x) =
di

∑
k=1

x[k] logx[k] ▸ Q: Softmax

X
(i)
t+ 1

2
,[k] =

exp(−ηit(∑t−1s=1 gs,[k] + gt−1,[k]))
∑dil=1 exp(−ηit(∑t−1s=1 gs,[l] + gt−1,[l]))
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Energy inequality

Suppose that player i runs OptDA or DS-OptMD. Then, for any pi ∈ X i, we have

λit+1ψ
i
t+1(pi) ≤ λitψ

i
t(pi) − ⟨git,Xi

t+ 1
2

− pi⟩ + (λit+1 − λit)ϕi(pi)

+ ⟨git − git−1,Xi
t+ 1

2

−Xi
t+1⟩ − λitDi(Xi

t+1,X
i
t+ 1

2

) − λitDi(Xi
t+ 1

2

,Xi
t)

where (ψit)t∈N and ϕ are non-negative, and λit = 1/ηit.

ψi
t is a convergence measure (Bregman divergence or Fenchel coupling)

1 ψit(pi) ≥
1

2
∥Xi

t − pit∥2

2 Reciprocity condition: if Xi
t → pi then ψit(pi)→ 0
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λit+1ψ
i
t+1(pi) ≤ λitψit(pi) − ⟨git,Xi

t+ 1
2

− pi⟩ + (λit+1 − λit)ϕi(pi)

+ ⟨git − git−1,Xi
t+ 1

2

−Xi
t+1⟩ − λitDi(Xi

t+1,X
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t+ 1

2

) − λitDi(Xi
t+ 1

2

,Xi
t)

where (ψit)t∈N and ϕ are non-negative, and λit = 1/ηit.

Sum the energy inequality from t = 1 to T gives

T

∑
t=1

⟨git,Xi
t+ 1

2

− pi⟩ ≤ λiT+1ϕ
i(pi) +

T

∑
t=1

∥git − git−1∥2(i),∗
λit

−
T

∑
t=2

λit−1
8

∥Xi
t+ 1

2

−Xi
t− 1

2

∥2(i) (1)
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Adaptive learning rate

T

∑
t=1

⟨git,Xi
t+ 1

2

− pi⟩ ≤ λiT+1ϕi(pi) +
T

∑
t=1

∥git − git−1∥2(i),∗
λit

−
T

∑
t=2

λit−1
8

∥Xi
t+ 1

2

−Xi
t− 1

2

∥2(i)

Take the adaptive learning rate

ηit =
1√

τ i +∑t−1s=1∥git − git−1∥2(i),∗
(Adapt)

● τ i > 0 can be chosen freely by the player
● ηit is thus computed solely based on local information available to each player
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Theoretical guarantees for general convex games

Let player i plays OptDA or DS-OptMD with (Adapt):

● No-regret: If P i ⊆ X i is bounded and G = sup
t

∥git∥, the regret incurred by the player is

bounded as RegiT (P i) = O(G
√
T +G2).

● Consistent: If X i is compact and the action profile x−it of all other players converges to
some limit profile x−i∞, the trajectory of chosen actions of player i converges to the best
response set arg min

xi∈X i
`i(xi,x−i∞).
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Theoretical guarantees for general convex games: Proof sketch

If P i ⊆ X i is bounded and G = sup
t

∥git∥, the regret incurred by the player i is bounded

as RegiT (P i) = O(G
√
T +G2).

Drop −
T

∑
t=2

λit−1
8

∥Xi
t+ 1

2

−Xi
t− 1

2

∥2(i) in (1) gives

T

∑
t=1

⟨git,Xi
t+ 1

2

− pi⟩ ≤ λiT+1ϕi(pi) +
T

∑
t=1

∥git − git−1∥2(i),∗
λit

Applying the AdaGrad lemma shows RegiT (P i) = O
⎛
⎜⎜
⎝

¿
ÁÁÀ T

∑
t=1

∥git − git−1∥2 +G2
⎞
⎟⎟
⎠
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Variational Stability

Definition [Variationally stable games]

Let V = (∇1 `
1, . . . ,∇M `M). A continuous convex game is variationally stable if the set

X⋆ of Nash equilibria of the game is nonempty and

⟨V(x),x − x⋆⟩ =
N

∑
i=1

⟨∇i `i(x), xi − xi⋆⟩ ≥ 0 for all x ∈ X , x⋆ ∈ X⋆. (2)

The game is strictly variationally stable if (2) holds as a strict inequality whenever x ∉ X⋆.

Especially, a game is variationally stable if V is monotone

Examples: ● Convex-concave zero-sum games ● Zero-sum polymatrix games
Examples: ● Cournot oligopolies ● Kelly auctions
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Theoretical guarantees for variationally stable games

If all players use OptDA or DS-OptMD with (Adapt) in a variationally stable game:

● Constant individual regret For all i ∈ N and every bounded comparator set P i ⊆ X i, the
individual regret of player i is bounded as RegiT (P i) = O(1).

● Convergence to Nash equilibrium The induced trajectory of play converges to a Nash
equilibrium provided that either of the following is satisfied:

a The game is strictly variationally stable.
b The game is variationally stable and hi is (sub)differentiable on all X i.
c The players of a two-player finite zero-sum game follow stabilized OMWU.

[Highlight: we do not assume uniqueness of Nash equilibrium]
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Theoretical guarantees for variationally stable games: Proof sketch

1 Show that λit converges to a finite constant when t→ +∞.

2 Under a suitable divergence metric, establish the quasi-Fejér monotonicity of the
iterates with respect to any Nash equilibrium x⋆.

3 Derive that ∥Xt+ 1
2
−Xt∥→ 0 and ∥Xt −Xt− 1

2
∥→ 0 as t→ +∞.

4 For a and b (general): Prove that every cluster point of the sequence of play is a Nash
equilibrium and conclude.
For c (OWMU): Prove that the sequence of play has at most one cluster point and
subsequently this cluster point must be a Nash equlibrium.
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Conclusion and perspective

Adaptive optimistic algorithms

● Achieve no regret
● Converge to Nash equilibrium in many games

For future research:

● What happens when the algorithm does not converge?

Thanks for your attention!
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