Adaptive Learning in Continuous Games: Optimal Regret Bounds and Convergence to Nash Equilibrium

Yu-Guan Hsieh, Kimon Antonakopoulos, and Panayotis Mertikopoulos

COLT 2021

At each round t = 1, 2, ..., each player $i \in \mathcal{N} \coloneqq \{1, ..., N\}$

- Plays an action $x_t^i \in \mathcal{X}^i$
- Suffers loss $\ell^i(\mathbf{x}_t)$ and receives as feedback $g_t^i \coloneqq \nabla_i \ell^i(\mathbf{x}_t)$

• Each player *i* has a convex closed action set \mathcal{X}^i and a loss function $\ell^i: \mathcal{X}^1 \times \ldots \times \mathcal{X}^N \to \mathbb{R}$

At each round t = 1, 2, ..., each player $i \in \mathcal{N} \coloneqq \{1, ..., N\}$

- Plays an action $x_t^i \in \mathcal{X}^i$
- Suffers loss $\ell^i(\mathbf{x}_t)$ and receives as feedback $g_t^i \coloneqq \nabla_i \ell^i(\mathbf{x}_t)$

• Each player *i* has a convex closed action set \mathcal{X}^i and a loss function $\ell^i: \mathcal{X}^1 \times \ldots \times \mathcal{X}^N \to \mathbb{R}$

At each round $t = 1, 2, \ldots$, each player $i \in \mathcal{N} \coloneqq \{1, \ldots, N\}$

- Plays an action $x_t^i \in \mathcal{X}^i$
- Suffers loss $\ell^i(\mathbf{x}_t)$ and receives as feedback $g_t^i \coloneqq \nabla_i \ell^i(\mathbf{x}_t)$

- Each player *i* has a convex closed action set \mathcal{X}^i and a loss function $\ell^i: \mathcal{X}^1 \times \ldots \times \mathcal{X}^N \to \mathbb{R}$
- Joint action of all players $\mathbf{x} = (x^i)_{i \in \mathcal{N}} = (x^i, \mathbf{x}^{-i})$

At each round t = 1, 2, ..., each player $i \in \mathcal{N} \coloneqq \{1, ..., N\}$

- Plays an action $x_t^i \in \mathcal{X}^i$
- Suffers loss $\ell^i(\mathbf{x}_t)$ and receives as feedback $g^i_t \coloneqq \nabla_i \ell^i(\mathbf{x}_t)$

- Each player *i* has a convex closed action set \mathcal{X}^i and a loss function $\ell^i: \mathcal{X}^1 \times \ldots \times \mathcal{X}^N \to \mathbb{R}$
- Joint action of all players $\mathbf{x} = (x^i)_{i \in \mathcal{N}} = (x^i, \mathbf{x}^{-i})$

At each round $t = 1, 2, \ldots$, each player $i \in \mathcal{N} \coloneqq \{1, \ldots, N\}$

- Plays an action $x_t^i \in \mathcal{X}^i$
- Suffers loss $\ell^i(\mathbf{x}_t)$ and receives as feedback $g_t^i \coloneqq \nabla_i \ell^i(\mathbf{x}_t)$

- Each player *i* has a convex closed action set \mathcal{X}^i and a loss function $\ell^i: \mathcal{X}^1 \times \ldots \times \mathcal{X}^N \to \mathbb{R}$
- Joint action of all players $\mathbf{x} = (x^i)_{i \in \mathcal{N}} = (x^i, \mathbf{x}^{-i})$

At each round t = 1, 2, ..., each player $i \in \mathcal{N} \coloneqq \{1, ..., N\}$

- Plays an action $x_t^i \in \mathcal{X}^i$
- Suffers loss $\ell^i(\mathbf{x}_t)$ and receives as feedback $g^i_t \coloneqq \nabla_i \ell^i(\mathbf{x}_t)$

- Each player *i* has a convex closed action set \mathcal{X}^i and a loss function $\ell^i: \mathcal{X}^1 \times \ldots \times \mathcal{X}^N \to \mathbb{R}$
- Joint action of all players $\mathbf{x} = (x^i)_{i \in \mathcal{N}} = (x^i, \mathbf{x}^{-i})$

At each round $t = 1, 2, \ldots$, each player $i \in \mathcal{N} \coloneqq \{1, \ldots, N\}$

- Plays an action $x_t^i \in \mathcal{X}^i$
- Suffers loss $\ell^i(\mathbf{x}_t)$ and receives as feedback $g_t^i \coloneqq \nabla_i \ell^i(\mathbf{x}_t)$

- Each player *i* has a convex closed action set \mathcal{X}^i and a loss function $\ell^i: \mathcal{X}^1 \times \ldots \times \mathcal{X}^N \to \mathbb{R}$
- Joint action of all players $\mathbf{x} = (x^i)_{i \in \mathcal{N}} = (x^i, \mathbf{x}^{-i})$

At each round t = 1, 2, ..., each player $i \in \mathcal{N} \coloneqq \{1, ..., N\}$

- Plays an action $x_t^i \in \mathcal{X}^i$
- Suffers loss $\ell^i(\mathbf{x}_t)$ and receives as feedback $g^i_t \coloneqq
 abla_i \ell^i(\mathbf{x}_t)$

- Each player *i* has a convex closed action set \mathcal{X}^i and a loss function $\ell^i: \mathcal{X}^1 \times \ldots \times \mathcal{X}^N \to \mathbb{R}$
- Joint action of all players $\mathbf{x} = (x^i)_{i \in \mathcal{N}} = (x^i, \mathbf{x}^{-i})$
- $\ell^i(\cdot, \mathbf{x}^{-i})$ is convex and $abla_i \ell^i(\mathbf{x}_t)$ is Lipschitz continuous

Online learning in games: Nash equilibrium and Regret

- Nash equilibrium \mathbf{x}_{\star} : for all $i \in \mathcal{N}$ and all $x^i \in \mathcal{X}^i$, $\ell^i(x^i_{\star}, \mathbf{x}^{-i}_{\star}) \leq \ell^i(x^i, \mathbf{x}^{-i}_{\star})$
 - Hard to compute in general
 - The players only knows the game via gradient feedback

Online learning in games: Nash equilibrium and Regret

- Nash equilibrium \mathbf{x}_{\star} : for all $i \in \mathcal{N}$ and all $x^i \in \mathcal{X}^i$, $\ell^i(x^i_{\star}, \mathbf{x}^{-i}_{\star}) \leq \ell^i(x^i, \mathbf{x}^{-i}_{\star})$
 - Hard to compute in general
 - The players only knows the game via gradient feedback
- Individual regret of player *i*:

$$\operatorname{Reg}_{T}^{i}(\mathcal{P}^{i}) = \max_{p^{i} \in \mathcal{P}^{i}} \sum_{t=1}^{T} \left(\underbrace{\ell^{i}(x_{t}^{i}, \mathbf{x}_{t}^{-i}) - \ell^{i}(p^{i}, \mathbf{x}_{t}^{-i})}_{\operatorname{cost of not playing } p^{i} \text{ in round } t \right).$$

No regret if $\operatorname{Reg}_T^i(\mathcal{P}^i) = o(T)$.

Online learning in games: Nash equilibrium and Regret

- Nash equilibrium \mathbf{x}_{\star} : for all $i \in \mathcal{N}$ and all $x^i \in \mathcal{X}^i$, $\ell^i(x^i_{\star}, \mathbf{x}^{-i}_{\star}) \leq \ell^i(x^i, \mathbf{x}^{-i}_{\star})$
 - Hard to compute in general
 - The players only knows the game via gradient feedback
- Individual regret of player *i*:

$$\operatorname{Reg}_{T}^{i}(\mathcal{P}^{i}) = \max_{p^{i} \in \mathcal{P}^{i}} \sum_{t=1}^{T} \left(\underbrace{\ell^{i}(x_{t}^{i}, \mathbf{x}_{t}^{-i}) - \ell^{i}(p^{i}, \mathbf{x}_{t}^{-i})}_{\operatorname{cost of not playing } p^{i} \text{ in round } t \right).$$

No regret if $\operatorname{Reg}_T^i(\mathcal{P}^i) = o(T)$.

• Nash equilibrium leads to no regret but the converse is more delicate

Fast convergence of sequence of play is mostly proved for suitably tuned learning rates

• Two-player planar bilinear zero-sum game

$$\ell^1(\mathbf{x}) = -\ell^2(\mathbf{x}) = x^1 x^2$$
 where $\mathcal{X}^1 = \mathcal{X}^2 = [-4, 8]$

• The two players play **optimistic** gradient (OG) with constant stepsize $\eta = 0.5$ and T = 100

- Property

OG converges in bilinear zero-sum games

Fast convergence of sequence of play is mostly proved for suitably tuned learning rates

• Two-player planar bilinear zero-sum game

$$\ell^1(\mathbf{x}) = -\ell^2(\mathbf{x}) = x^1 x^2$$
 where $\mathcal{X}^1 = \mathcal{X}^2 = [-4, 8]$

• The two players play **optimistic** gradient (OG) with constant stepsize $\eta = 0.7$ and T = 100

Problem

This only holds when η is small enough

Fast convergence of sequence of play is mostly proved for suitably tuned learning rates

• Two-player planar bilinear zero-sum game

$$\ell^1(\mathbf{x}) = -\ell^2(\mathbf{x}) = x^1 x^2$$
 where $\mathcal{X}^1 = \mathcal{X}^2 = [-4, 8]$

• The two players play **optimistic** gradient (OG) with decreasing stepsize $\eta_t = 1/\sqrt{t}$ and T = 100

— Solution? ——

$$\eta_t \propto 1/\sqrt{t} \rightarrow \text{slow convergence}$$

Fast convergence of sequence of play is mostly proved for suitably tuned learning rates

• Two-player planar bilinear zero-sum game

$$\ell^1(\mathbf{x}) = -\ell^2(\mathbf{x}) = x^1 x^2$$
 where $\mathcal{X}^1 = \mathcal{X}^2 = [-4, 8]$

• The two players play **optimistic** gradient (OG) with adaptive stepsize and T = 100

Solution

Adaptive learning ← focus of the work

Mirror descent type methods with dynamic learning rates may incur regret

Assume that player 1 has a linear loss and simplex-constrained action set.

•
$$\mathcal{X}^1 = \Delta^1 = \{(w_1, w_2) \in \mathbb{R}^2, w_1 + w_2 = 1\}$$

• Feedback sequence:

$$\underbrace{[\underbrace{-e_1,\ldots,-e_1}_{[T/3]},\underbrace{-e_2,\ldots,-e_2}_{[2T/3]}]}_{[2T/3]}$$

• Adaptive (Optimistic) Multiplicative Weight Update

(Example from [Orabona and Pal 16])

Mirror descent type methods with dynamic learning rates may incur regret

- Cause: new information enters MD with a decreasing weight
- Solution: enter each feedback with equal weight E.g. Dual averaging or stabilization technique

Mirror descent type methods with dynamic learning rates may incur regret

Assume that player 1 has a linear loss and simplex-constrained action set.

•
$$\mathcal{X}^1 = \Delta^1 = \{(w_1, w_2) \in \mathbb{R}^2, w_1 + w_2 = 1\}$$

• Feedback sequence:

$$\underbrace{[-e_1,\ldots,-e_1}_{[T/3]},\underbrace{-e_2,\ldots,-e_2}_{[2T/3]}]$$

 Adaptive (Optimistic) Multiplicative Weight Update with Dual Averaging

(Example from [Orabona and Pal 16])

• Adaptive: they do not require any prior tuning or knowledge of the game.

- Adaptive: they do not require any prior tuning or knowledge of the game.
- No-regret: they achieve $\mathcal{O}(\sqrt{T})$ individual regret against arbitrary opponents.

- Adaptive: they do not require any prior tuning or knowledge of the game.
- No-regret: they achieve $\mathcal{O}(\sqrt{T})$ individual regret against arbitrary opponents.
- Consistent: they converge to the best response against convergent opponents.

- Adaptive: they do not require any prior tuning or knowledge of the game.
- No-regret: they achieve $\mathcal{O}(\sqrt{T})$ individual regret against arbitrary opponents.
- Consistent: they converge to the best response against convergent opponents.
- Convergent: if employed by all players in a monotone/variationally stable game, the induced sequence of play converges to Nash equilibrium.

Optimistic Dual Averaging: Examples

• OG-OptDA • \mathcal{X}^i convex closed • $h^i(x) = \frac{\|x\|_2^2}{2}$ • Q: Euclidean projection $\Pi_{\mathcal{X}}$

$$X_t^i = \Pi_{\mathcal{X}}(-\eta_t^i \sum_{s=1}^{t-1} g_t^s), \qquad X_{t+\frac{1}{2}}^i = \Pi_{\mathcal{X}}(X_t^i - \eta_t^i g_{t-1}^i)$$

• Stabilized OMWU
$$\rightarrow \mathcal{X}^i = \Delta^{d^i-1} \rightarrow h^i(x) = \sum_{k=1}^{d_i} x_{[k]} \log x_{[k]} \rightarrow Q$$
: Softmax

$$X_{t+\frac{1}{2},[k]}^{(i)} = \frac{\exp(-\eta_t^i(\sum_{s=1}^{t-1} g_{s,[k]} + g_{t-1,[k]}))}{\sum_{l=1}^{d_i} \exp(-\eta_t^i(\sum_{s=1}^{t-1} g_{s,[l]} + g_{t-1,[l]}))}$$

Energy inequality

Suppose that player i runs OptDA or DS-OptMD. Then, for any $p^i \in \mathcal{X}^i$, we have

$$\begin{split} \lambda_{t+1}^{i}\psi_{t+1}^{i}(p^{i}) &\leq \lambda_{t}^{i}\psi_{t}^{i}(p^{i}) - \langle g_{t}^{i}, X_{t+\frac{1}{2}}^{i} - p^{i} \rangle + (\lambda_{t+1}^{i} - \lambda_{t}^{i})\varphi^{i}(p^{i}) \\ &+ \langle g_{t}^{i} - g_{t-1}^{i}, X_{t+\frac{1}{2}}^{i} - X_{t+1}^{i} \rangle - \lambda_{t}^{i}D^{i}(X_{t+1}^{i}, X_{t+\frac{1}{2}}^{i}) - \lambda_{t}^{i}D^{i}(X_{t+\frac{1}{2}}^{i}, X_{t}^{i}) \end{split}$$

where $(\psi_t^i)_{t\in\mathbb{N}}$ and φ are non-negative, and $\lambda_t^i = 1/\eta_t^i$.

 ψ_t^i is a convergence measure (Bregman divergence or Fenchel coupling) 1 $\psi_t^i(p^i) \ge \frac{1}{2} ||X_t^i - p_t^i||^2$ 2 Reciprocity condition: if $X_t^i \to p^i$ then $\psi_t^i(p^i) \to 0$

Energy inequality

Suppose that player i runs OptDA or DS-OptMD. Then, for any $p^i \in \mathcal{X}^i$, we have

$$\lambda_{t+1}^i \psi_{t+1}^i(p^i) \le \lambda_t^i \psi_t^i(p^i) - \left\langle g_t^i, X_{t+\frac{1}{2}}^i - p^i \right\rangle + \left(\lambda_{t+1}^i - \lambda_t^i) \varphi^i(p^i) \right)$$

+
$$\langle g_t^i - g_{t-1}^i, X_{t+\frac{1}{2}}^i - X_{t+1}^i \rangle - \lambda_t^i D^i(X_{t+1}^i, X_{t+\frac{1}{2}}^i) - \lambda_t^i D^i(X_{t+\frac{1}{2}}^i, X_t^i)$$

where $(\psi_t^i)_{t\in\mathbb{N}}$ and φ are non-negative, and $\lambda_t^i = 1/\eta_t^i$.

Adaptive learning rate

$$\sum_{t=1}^{T} \langle g_t^i, X_{t+\frac{1}{2}}^i - p^i \rangle \leq \lambda_{T+1}^i \varphi^i(p^i) + \sum_{t=1}^{T} \frac{\|g_t^i - g_{t-1}^i\|_{(i),*}^2}{\lambda_t^i} - \sum_{t=2}^{T} \frac{\lambda_{t-1}^i}{8} \|X_{t+\frac{1}{2}}^i - X_{t-\frac{1}{2}}^i\|_{(i)}^2$$

Take the adaptive learning rate

$$\eta_t^i = \frac{1}{\sqrt{\tau^i + \sum_{s=1}^{t-1} \|g_t^i - g_{t-1}^i\|_{(i),*}^2}}$$
(Adapt)

- $\tau^i > 0$ can be chosen freely by the player
- η^i_t is thus computed solely based on local information available to each player

Theoretical guarantees for general convex games

Let player *i* plays OptDA or DS-OptMD with (Adapt):

• No-regret: If $\mathcal{P}^i \subseteq \mathcal{X}^i$ is bounded and $G = \sup_t \|g_t^i\|$, the regret incurred by the player is bounded as $\operatorname{Reg}_T^i(\mathcal{P}^i) = \mathcal{O}(G\sqrt{T} + G^2)$.

Theoretical guarantees for general convex games

Let player *i* plays OptDA or DS-OptMD with (Adapt):

- No-regret: If $\mathcal{P}^i \subseteq \mathcal{X}^i$ is bounded and $G = \sup_t \|g_t^i\|$, the regret incurred by the player is bounded as $\operatorname{Reg}_T^i(\mathcal{P}^i) = \mathcal{O}(G\sqrt{T} + G^2)$.
- Consistent: If \mathcal{X}^i is compact and the action profile \mathbf{x}_t^{-i} of all other players converges to some limit profile \mathbf{x}_{∞}^{-i} , the trajectory of chosen actions of player *i* converges to the best response set $\underset{x^i \in \mathcal{X}^i}{\operatorname{arg min}} \ell^i(x^i, \mathbf{x}_{\infty}^{-i})$.

Theoretical guarantees for general convex games: Proof sketch

If $\mathcal{P}^i \subseteq \mathcal{X}^i$ is bounded and $G = \sup_t \|g_t^i\|$, the regret incurred by the player i is bounded as $\operatorname{Reg}_T^i(\mathcal{P}^i) = \mathcal{O}(G\sqrt{T} + G^2)$.

Drop
$$-\sum_{t=2}^{T} \frac{\lambda_{t-1}^{i}}{8} \|X_{t+\frac{1}{2}}^{i} - X_{t-\frac{1}{2}}^{i}\|_{(i)}^{2}$$
 in (1) gives
 $\sum_{t=1}^{T} \langle g_{t}^{i}, X_{t+\frac{1}{2}}^{i} - p^{i} \rangle \leq \lambda_{T+1}^{i} \varphi^{i}(p^{i}) + \sum_{t=1}^{T} \frac{\|g_{t}^{i} - g_{t-1}^{i}\|_{(i),*}^{2}}{\lambda_{t}^{i}}$
Applying the AdaGrad lemma shows $\operatorname{Reg}_{T}^{i}(\mathcal{P}^{i}) = \mathcal{O}\left(\sqrt{\sum_{t=1}^{T} \|g_{t}^{i} - g_{t-1}^{i}\|^{2}} + G^{2}\right)$

Variational Stability

Definition [Variationally stable games]

Let $\mathbf{V} = (\nabla_1 \ell^1, \dots, \nabla_M \ell^M)$. A continuous convex game is variationally stable if the set \mathcal{X}_{\star} of Nash equilibria of the game is nonempty and

$$\langle \mathbf{V}(\mathbf{x}), \mathbf{x} - \mathbf{x}_{\star} \rangle = \sum_{i=1}^{N} \langle \nabla_{i} \ell^{i}(\mathbf{x}), x^{i} - x_{\star}^{i} \rangle \ge 0 \quad \text{for all } \mathbf{x} \in \mathcal{X}, \ \mathbf{x}_{\star} \in \mathcal{X}_{\star}.$$
(2)

The game is strictly variationally stable if (2) holds as a strict inequality whenever $x \notin \mathcal{X}_{\star}$.

Especially, a game is variationally stable if ${\bf V}$ is monotone

Examples: • Convex-concave zero-sum games • Zero-sum polymatrix games

• Cournot oligopolies • Kelly auctions

If all players use OptDA or DS-OptMD with (Adapt) in a variationally stable game:

Constant individual regret For all i ∈ N and every bounded comparator set Pⁱ ⊆ Xⁱ, the individual regret of player i is bounded as Regⁱ_T(Pⁱ) = O(1).

- Constant individual regret For all i ∈ N and every bounded comparator set Pⁱ ⊆ Xⁱ, the individual regret of player i is bounded as Regⁱ_T(Pⁱ) = O(1).
- Convergence to Nash equilibrium The induced trajectory of play converges to a Nash equilibrium provided that either of the following is satisfied:

- Constant individual regret For all i ∈ N and every bounded comparator set Pⁱ ⊆ Xⁱ, the individual regret of player i is bounded as Regⁱ_T(Pⁱ) = O(1).
- Convergence to Nash equilibrium The induced trajectory of play converges to a Nash equilibrium provided that either of the following is satisfied:
 - The game is strictly variationally stable.

- Constant individual regret For all i ∈ N and every bounded comparator set Pⁱ ⊆ Xⁱ, the individual regret of player i is bounded as Regⁱ_T(Pⁱ) = O(1).
- Convergence to Nash equilibrium The induced trajectory of play converges to a Nash equilibrium provided that either of the following is satisfied:
 - The game is strictly variationally stable.
 - **b** The game is variationally stable and h^i is (sub)differentiable on all \mathcal{X}^i .

- Constant individual regret For all i ∈ N and every bounded comparator set Pⁱ ⊆ Xⁱ, the individual regret of player i is bounded as Regⁱ_T(Pⁱ) = O(1).
- Convergence to Nash equilibrium The induced trajectory of play converges to a Nash equilibrium provided that either of the following is satisfied:
 - a The game is strictly variationally stable.
 - **b** The game is variationally stable and h^i is (sub)differentiable on all \mathcal{X}^i .
 - **c** The players of a two-player finite zero-sum game follow stabilized OMWU. [Highlight: we <u>do not</u> assume uniqueness of Nash equilibrium]

1 Show that λ_t^i converges to a finite constant when $t \to +\infty$.

- **1** Show that λ_t^i converges to a finite constant when $t \to +\infty$.
- 2 Under a suitable divergence metric, establish the quasi-Fejér monotonicity of the iterates with respect to any Nash equilibrium x_* .

- **1** Show that λ_t^i converges to a finite constant when $t \to +\infty$.
- 2 Under a suitable divergence metric, establish the quasi-Fejér monotonicity of the iterates with respect to any Nash equilibrium x_* .
- **3** Derive that $\|\mathbf{X}_{t+\frac{1}{2}} \mathbf{X}_t\| \to 0$ and $\|\mathbf{X}_t \mathbf{X}_{t-\frac{1}{2}}\| \to 0$ as $t \to +\infty$.

- **1** Show that λ_t^i converges to a finite constant when $t \to +\infty$.
- 2 Under a suitable divergence metric, establish the quasi-Fejér monotonicity of the iterates with respect to any Nash equilibrium x_* .
- **3** Derive that $\|\mathbf{X}_{t+\frac{1}{2}} \mathbf{X}_t\| \to 0$ and $\|\mathbf{X}_t \mathbf{X}_{t-\frac{1}{2}}\| \to 0$ as $t \to +\infty$.
- **4** For a and b (general): Prove that every cluster point of the sequence of play is a Nash equilibrium and conclude.

For c (OWMU): Prove that the sequence of play has at most one cluster point and subsequently this cluster point must be a Nash equilibrium.

Conclusion and perspective

Adaptive optimistic algorithms

- Achieve no regret
- Converge to Nash equilibrium in many games

For future research:

• What happens when the algorithm does not converge?

Conclusion and perspective

Adaptive optimistic algorithms

- Achieve no regret
- Converge to Nash equilibrium in many games

For future research:

• What happens when the algorithm does not converge?

Thanks for your attention!