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Online learning in games: Setup

At each round t = 1,2, ..., each player i e N :=={1,..., N}

- Plays an action zj € X"

- Suffers loss ¢/(x;) and receives as feedback g} = V; £'(x;)

* Each player i has a convex closed action set X* and a loss Plaver 2
function £ X1 x ... x XN >R ﬂcfﬁgf

@
Player 1 Player 3

Yu-Guan Hsieh Adaptive learning in continuous games COLT, August 2021 1/15

1
t



Online learning in games: Setup

At each round t = 1,2, ..., each player i e N :=={1,..., N}

- Plays an action zj € X

- Suffers loss ¢/(x;) and receives as feedback g} = V; £'(x;)

a
e Each player ¢ has a convex closed action set X’ and a loss Pla‘:r 9
function /X1 x ... x XN SR 22 Tgtz

o gt @
@ @
Player 1 Player 3

Yu-Guan Hsieh Adaptive learning in continuous games COLT, August 2021 1/15



Online learning in games: Setup

At each round t = 1,2, ..., each player i e N :=={1,..., N}

- Plays an action z} € X"

- Suffers loss ¢/(x;) and receives as feedback g} = V; £*(x;)

* Each player i has a convex closed action set X% and a loss
function =Xt x ... x XN SR

e Joint action of all players x = (z%);epn = (2, x7)

Yu-Guan Hsieh Adaptive learning in continuous games

Player 1 Player 3

COLT, August 2021 1/15



Online learning in games: Setup

At each round t = 1,2, ..., each player i e N :=={1,..., N}

- Plays an action zj € X

- Suffers loss ¢/(x;) and receives as feedback g} = V; £'(x;)

* Each player i has a convex closed action set X% and a loss
function £ X x ... x XN S R 22 Tg

e Joint action of all players x = (2%);en = (2%, x7°)
1 .@ 3
% N

o gt @
@ @
Player 1 Player 3

Yu-Guan Hsieh Adaptive learning in continuous games COLT, August 2021 1/15



Online learning in games: Setup

At each round t = 1,2, ..., each player i e N :=={1,..., N}

- Plays an action z} € X"

- Suffers loss ¢/(x;) and receives as feedback g} = V; £*(x;)

* Each player i has a convex closed action set X% and a loss
function =Xt x ... x XN SR

e Joint action of all players x = (z%);epn = (2, x7)

Yu-Guan Hsieh Adaptive learning in continuous games

Player 1 Player 3

COLT, August 2021 1/15



Online learning in games: Setup

At each round t = 1,2, ..., each player i e N :=={1,..., N}

- Plays an action zj € X

- Suffers loss ¢/(x;) and receives as feedback g} = V; £'(x;)

* Each player i has a convex closed action set X% and a loss
function £ X x ... x XN S R 22 Tg

e Joint action of all players x = (2%);en = (2%, x7°)
1 .@ 3
% N

o gt @
@ @
Player 1 Player 3

Yu-Guan Hsieh Adaptive learning in continuous games COLT, August 2021 1/15



Online learning in games: Setup

At each round t = 1,2, ..., each player i e N :=={1,..., N}

- Plays an action z} € X"

- Suffers loss ¢/(x;) and receives as feedback g} = V; £*(x;)

* Each player i has a convex closed action set X% and a loss
function =Xt x ... x XN SR

e Joint action of all players x = (z%);epn = (2, x7)

Yu-Guan Hsieh Adaptive learning in continuous games

Player 1 Player 3

COLT, August 2021 1/15



Online learning in games: Setup

At each round t = 1,2, ..., each player i e N :=={1,..., N}

- Plays an action z! € X"
- Suffers loss ¢/(x;) and receives as feedback g} = V; £'(x;)

* Each player i has a convex closed action set X% and a loss
function £: X1 x ... x XN >R

e Joint action of all players x = (z%);epn = (2, x7)
e /'(,x ") is convex and V; £'(x;) is Lipschitz continuous
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Online learning in games: Nash equilibrium and Regret

e Nash equilibrium x,: for all i € N and all z% € X*, £i(2',x") < 0(2,x3°)
- Hard to compute in general
- The players only knows the game via gradient feedback
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e Nash equilibrium x,: for all i € N and all z% € X*, £i(2',x") < 0(2,x3°)
- Hard to compute in general
- The players only knows the game via gradient feedback

e Individual regret of player i:

. . T . . . . . .
Reg-(P") = max Y ((x},x;") - (0, %x;")).
PPt i

cost of not playing p' in round ¢

No regret if Regh(P") = o(T).
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Online learning in games: Nash equilibrium and Regret

e Nash equilibrium x,: for all i € N and all z% € X*, £i(2',x") < 0(2,x3°)
- Hard to compute in general
- The players only knows the game via gradient feedback

e Individual regret of player i:

. . T . . . . . .
Reg-(P") = max Y ((x},x;") - (0, %x;")).
PPt i

cost of not playing p' in round ¢

No regret if Regh(P") = o(T).
® Nash equilibrium leads to no regret but the converse is more delicate
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Limitations of existing (optimistic) methods

Fast convergence of sequence of play is mostly proved for suitably tuned learning rates

3 —
e Two-player planar bilinear zero-sum game - —— last
average
0M(x) = —0*(x) = 2'2? where X' = X?=[-4,8] S
x N\
® The two players play optimistic gradient (OG) o
with constant stepsize 7 = 0.5 and 7' = 100
' t
Property .
OG converges in bilinear zero-sum games s/
<
2

Yu-Guan Hsieh Adaptive learning in continuous games

COLT, August 2021 3/15



Limitations of existing (optimistic) methods

Fast convergence of sequence of play is mostly proved for suitably tuned learning rates

e Two-player planar bilinear zero-sum game —— last

“““ average

0M(x) = —0*(x) = 2'2? where X' = X?=[-4,8]

® The two players play optimistic gradient (OG)
with constant stepsize 7= 0.7 and T' = 100

Problem

This only holds when 7 is small enough

Yu-Guan Hsieh Adaptive learning in continuous games COLT, August 2021 3/15



Limitations of existing (optimistic) methods

Fast convergence of sequence of play is mostly proved for suitably tuned learning rates

- e
e Two-player planar bilinear zero-sum game 34 last

“““ average

(M(x) = (%) = 2'2? where X' =x%=[-4,8] 2 e :

® The two players play optimistic gradient (OG) N
with decreasing stepsize 1, = 1/7/t and T' = 100

Solution?

n; o< 1/7/t — slow convergence

I
w
S = =

/
/
Z
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Limitations of existing (optimistic) methods

Fast convergence of sequence of play is mostly proved for suitably tuned learning rates

e Two-player planar bilinear zero-sum game 3l 7 - —— last
. /S L average
0M(x) = —0*(x) = 2'2? where X' = X?=[-4,8] ;v A
11 X X
® The two players play optimistic gradient (OG) 0 A T
B )
with adaptive stepsize and T' = 100 o
-1 _\ \ . / /
Solution P
. . 2NN N T
Adaptive learning < focus of the work P
SN N N > T
’ _ 7
-2 0 2
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Limitations of existing (optimistic) methods

Mirror descent type methods with dynamic learning rates may incur regret

Assume that player 1 has a linear loss and simplex-constrained action set.

4 Xl = Al = {(wl,wg) eRz,lerwg = 1}

30 —— Ada-MWU
* Feedback sequence: — Ada-OMWU
[—61,...,—61,—62,...,—62] @20
M 3
[T/3] [27/3] ® 1o
* Adaptive (Optimistic) Multiplicative
Weight Update 0
0 20 40 60 80 100
(Example from [Orabona and Pal 16])

Time horizon T
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Limitations of existing (optimistic) methods

Mirror descent type methods with dynamic learning rates may incur regret

e Cause: new information enters MD with a decreasing weight
e Solution: enter each feedback with equal weight
E.g. Dual averaging or stabilization technique

x5 x5

M5 191 nag 43 Na

291 739 493

MD-type update DA-type update
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Limitations of existing (optimistic) methods

Mirror descent type methods with dynamic learning rates may incur regret

Assume that player 1 has a linear loss and simplex-constrained action set.

4 Xl = Al = {(wl,wg) € Rz,w1+w2 = 1}
e Feedback sequence:

30 —— Ada-MWU
—— Ada-OMWU
[—61, e, €1, €2, ..., —62] w20 T Ada-MWU-DA
~ > Ada-OMWU-DA
(0]
[T/3] 27/3] o 10
* Adaptive (Optimistic) Multiplicative

Weight Update with Dual Averaging

(Example from [Orabona and Pal 16])

40 60 80 100
Time horizon T
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Contributions

We introduce a family of algorithms that are

e Adaptive: they do not require any prior tuning or knowledge of the game.
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Contributions

We introduce a family of algorithms that are

e Adaptive: they do not require any prior tuning or knowledge of the game.
® No-regret: they achieve O(\/T) individual regret against arbitrary opponents.
e Consistent: they converge to the best response against convergent opponents.

e Convergent: if employed by all players in a monotone/variationally stable game, the
induced sequence of play converges to Nash equilibrium.
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Optimistic Dual Averaging (OptDA)

. ) t-1 hZ(IL') Ct-1 . ) . DZ(LL‘ Xz)
Xi=argmin Y (g}, 2)+ —— = Q(-ni Y g ), X,y =argmin (g}, z)+ —
TeXi s=1 i s=1 2 TeXi un
Y
Yi=0 ! _
Regularizer h': 1-strongly convex and C"
Mirror map: Q'(y) = arg max (y, z) — h*(x)
TeXl
Y Bregman divergence:
D'(p,z) = h'(p) - h'(x) - (VA (2),p-x)
Vh Q

Yu-Guan Hsieh

* Play z;, = Xip1

® Accumulate gradient and compute X1, X, 3
2

Adaptive learning in continuous games

1 and receive feedback g

COLT, August 2021
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Optimistic Dual Averaging (OptDA)

. ) t—1 . hz T Ct-1 . ) . Dz T X’L
X, = argmin Z(gg,x) + # = Q( -y Z g; ), X/, 1 =argmin(g;_;,z) + #
TeXt s=1 ¢ s=1 2 reXt ¢

Y,

Regularizer h': 1-strongly convex and C"

Mirror map: Q'(y) = argmax (y, z) — h'(z)
zeXt
Bregman divergence:

D'(p,x) = h'(p) ~h'(z) ~ (VA (x),p - x)

® Play 21 = X; and receive feedback g1

¢ Accumulate gradient and compute X¢,1, X, 3
2
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® Accumulate gradient and compute Xo, X%
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Optimistic Dual Averaging (OptDA)

A -1 B
X, =argmin ) (gi,z) + ()
reXt  s=1 t

e Q=i Y gr) X/, =argmin{gi_,z)+
s=1

D' (z, X})

. 7
reX?t ¢

Y,

Yu-Guan Hsieh Adaptive learning in continuous games

Regularizer h': 1-strongly convex and C"

Mirror map: Q'(y) = argmax (y, z) — h'(z)
zeXt
Bregman divergence:

D'(p,x) = h'(p) ~h'(z) ~ (VA (x),p - x)

® Play 25 = X% and receive feedback g

® Accumulate gradient and compute Xa, X%
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Regularizer h': 1-strongly convex and C"

Mirror map: Q'(y) = argmax (y, z) — h'(z)
zeXt
Bregman divergence:

D'(p,x) = h'(p) ~h'(z) ~ (VA (x),p - x)

® Play 23 = X% and receive feedback g3

® Accumulate gradient and compute X3, X%
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|
Optimistic Dual Averaging: Examples

2
* OG-OptDA » X" convex closed » h'(z) = HUUTz » (): Euclidean projection Ty

A -1 , o
Xy =Tx(-n; >, 97), XZ+% = Ix (X{ = n¢9¢-1)
s=1

. i d
e Stabilized OMWU » XP = AY"L 4 pi(g) = Z k1 log ) » Q: Softmax

exp(—} (Z51 gs. (a1 + 9e-1.18]))
Zl 1eXp( 771&(23 19s,[1 +gt—1,[l]))

(1) _
Xt+%,[k]
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L —
Energy inequality
Suppose that player i runs OptDA or DS-OptMD. Then, for any p’ € X*, we have

Nt () < M) = o, Xj1 =)+ (i = M) ()
+ <gé - 9%—1»XZ+1 - Z+1> - )\iDi(XfH,X;%) - )\iD"(X;%,XZ)

2

where (1})sen and ¢ are non-negative, and \! = 1/7;.

¢§ is a convergence measure (Bregman divergence or Fenchel coupling)
R T
® .(v) 2 5| X; -pil®

@ Reciprocity condition: if X} — p then wi(pi) -0
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-
Energy inequality
Suppose that player i runs OptDA or DS-OptMD. Then, for any p’ € X*, we have

+1¢t+1(P ) <A T/Jt(P )~ ((/t % -p') + ()\iu - /\i)sﬁi(Pi)
+ <g gt 17X Xt+1) A%Dz(XZH?XZJr%) - AiDZ(X§+%7XZ)

where (¥!);en and ¢ are non-negative, and \i = 1/n!.

Sum the energy inequality from ¢ =1 to T gives

r T g - gl
S g5 X0 —pl) € Nep'(p) + 3 ———

A (3
t=1 % t=1 /\t =2

T i
t-1 o % 2
- Z ] HXtJr% _Xt,%”(z) (1)
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Adaptive learning rate

I ”gt gt 1”2)* LN ;
(91, X P') S Apae' (p) + Z N -y %1 X} XL;H%,‘)
t=1 t t=2 2
Take the adaptive learning rate
i 1
N = (Adapt)

\/Ti +¥ilgi - g1y H%@'),*

e 70> 0 can be chosen freely by the player

o n,f is thus computed solely based on local information available to each player

Yu-Guan Hsieh Adaptive learning in continuous games

COLT, August 2021

9/15



Theoretical guarantees for general convex games

Let player i plays OptDA or DS-OptMD with (Adapt):
e No-regret: If P! c X% is bounded and G = sup|g;|, the regret incurred by the player is
t
bounded as Regl(P?) = O(GVT + G?).
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Theoretical guarantees for general convex games

Let player i plays OptDA or DS-OptMD with (Adapt):
e No-regret: If P! c X% is bounded and G = sup|g;|, the regret incurred by the player is
t

bounded as Regl(P%) = O(GVT + G?).

e Consistent: If X% is compact and the action profile xt_i of all other players converges to

some limit profile x5, the trajectory of chosen actions of player i converges to the best

response set argmin ' (z',x_)).
zieX?
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Theoretical guarantees for general convex games: Proof sketch

If P c X" is bounded and G = sup| g;||, the regret incurred by the player i is bounded
t
as Regl(PY) = O(GVT + G?).

Drop - Z = I1X; _XZ_%“%i) in (1) gives
T , _ T lgt - gialgy .
Sk X,y ~ 1) < X (1) + 3 0
] t=1 t

Applying the AdaGrad lemma shows Reg/r(P*) = O| A ‘ Mlgi-gi |2 +G?
t=1
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-
Variational Stability

Definition [Variationally stable games|

Let V= (V1 0, ...,Vu EM). A continuous convex game is variationally stable if the set
X, of Nash equilibria of the game is nonempty and

N . . .
(V(x),x-x.)= > (V; '(x),2' —2.) >0 forall xe X, x, € X,. (2)
i=1

The game is strictly variationally stable if (2) holds as a strict inequality whenever x ¢ X, .

Especially, a game is variationally stable if V' is monotone

Examples: ® Convex-concave zero-sum games ® Zero-sum polymatrix games
® Cournot oligopolies ® Kelly auctions
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Theoretical guarantees for variationally stable games

If all players use OptDA or DS-OptMD with (Adapt) in a variationally stable game:

e Constant individual regret For all i € A" and every bounded comparator set Plc X', the
individual regret of player i is bounded as Reg/(P*) = O(1).
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Theoretical guarantees for variationally stable games

If all players use OptDA or DS-OptMD with (Adapt) in a variationally stable game:

e Constant individual regret For all i € A" and every bounded comparator set Plc X', the
individual regret of player i is bounded as Reg/(P*) = O(1).

e Convergence to Nash equilibrium The induced trajectory of play converges to a Nash
equilibrium provided that either of the following is satisfied:

B The game is strictly variationally stable.
B The game is variationally stable and A’ is (sub)differentiable on all X*.

Yu-Guan Hsieh Adaptive learning in continuous games COLT, August 2021 13 /15



Theoretical guarantees for variationally stable games

If all players use OptDA or DS-OptMD with (Adapt) in a variationally stable game:

e Constant individual regret For all i € A" and every bounded comparator set Plc X', the
individual regret of player i is bounded as Reg/(P*) = O(1).

e Convergence to Nash equilibrium The induced trajectory of play converges to a Nash
equilibrium provided that either of the following is satisfied:
B The game is strictly variationally stable.
B The game is variationally stable and A’ is (sub)differentiable on all X*.
The players of a two-player finite zero-sum game follow stabilized OMWU.

[Highlight: we do not assume uniqueness of Nash equilibrium]
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Theoretical guarantees for variationally stable games: Proof sketch

© Show that X! converges to a finite constant when t — +oo.
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Theoretical guarantees for variationally stable games: Proof sketch

© Show that X! converges to a finite constant when t — +oo.

® Under a suitable divergence metric, establish the quasi-Fejér monotonicity of the
iterates with respect to any Nash equilibrium x,.
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Theoretical guarantees for variationally stable games: Proof sketch

© Show that X! converges to a finite constant when t — +oo.

® Under a suitable divergence metric, establish the quasi-Fejér monotonicity of the
iterates with respect to any Nash equilibrium x,.

© Derive that HXH% -X¢| - 0 and HXt—Xt_%H -0 ast— +oo.
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Theoretical guarantees for variationally stable games: Proof sketch

© Show that \! converges to a finite constant when ¢ — +co.

® Under a suitable divergence metric, establish the quasi-Fejér monotonicity of the
iterates with respect to any Nash equilibrium x,.

© Derive that HXH% -X¢| - 0 and | X —Xt_%H -0 ast— +oo.

@ For a and b (general): Prove that every cluster point of the sequence of play is a Nash
equilibrium and conclude.

For ¢ (OWMU): Prove that the sequence of play has at most one cluster point and
subsequently this cluster point must be a Nash equlibrium.
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Conclusion and perspective

Adaptive optimistic algorithms

e Achieve no regret

* Converge to Nash equilibrium in many games
For future research:

* What happens when the algorithm does not converge?
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Conclusion and perspective

Adaptive optimistic algorithms

e Achieve no regret

* Converge to Nash equilibrium in many games
For future research:

* What happens when the algorithm does not converge?

Thanks for your attention!
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