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Abstract

Beyond minimizing a single training loss, many deep
learning estimation pipelines rely on an auxiliary
objective to quantify and encourage desirable prop-
erties of the model (e.g. performance on another
dataset, robustness, agreement with a prior). Al-
though the simplest approach to incorporating an
auxiliary loss is to sum it with the training loss as a
regularizer, recent works have shown that one can
improve performance by blending the gradients be-
yond a simple sum; this is known as gradient surgery.
We cast the problem as a constrained minimization
problem where the auxiliary objective is minimized
among the set of minimizers of the training loss.
To solve this bilevel problem, we follow a param-
eter update direction that combines the training
loss gradient and the orthogonal projection of the
auxiliary gradient to the training gradient. In a
setting where gradients come from mini-batches, we
explain how, using a moving average of the train-
ing loss gradients, we can carefully maintain this
critical orthogonality property. We demonstrate
that our method, Bloop, can lead to much better
performances on NLP and vision experiments than
other gradient surgery methods without EMA.

1 Introduction

Overparameterized neural networks trained on large
datasets admit multiple solutions with the same op-
timal training loss [Cooper, 2018, Li et al., 2018].
Although these parameters may seem equivalent
when viewed through their training loss, they result
in different functions, which may exhibit starkly
different behaviors on unseen data points. Prac-

titioners are usually interested in generalization —
one would rather use the network with lower test
loss between two networks — but there are countless
other metrics of interest, such as performance on
another dataset, robustness, or model calibration.
In all of these cases, one aims to train the neural
network by minimizing a training loss Lmain while
keeping an eye on an auxiliary metric or loss Laux.
Optimization trade-offs. Our focus in this

paper is on methods that achieve the best possible
trade-off between training and auxiliary losses, using
a hyper-parameter λ ≥ 0 to control that trade-off:
λ = 0 corresponds to training on Lmain exclusively,
while increasing λ usually decreases Laux at the
expense of Lmain. Using the auxiliary loss as a
regularizer results in the mixed training method,
arguably the simplest approach to control that trade-
off:

min
θ
Lmain(θ) + λLaux(θ). (1)

Mixed training, however, runs into optimization
issues if the directions of the largest curvature of
the training loss and that of the auxiliary loss are
not aligned — see Section 3.3 for an example.
The Simple Bilevel Approach. Provided

that modern deep neural networks are inherently
overparameterized, leading to multiple minimizers,
an ideal solution would be to find the minimizer of
Lmain that achieves the smallest auxiliary loss. This
corresponds to solving Equation 1 in the limit where
λ→ 0, and can also be expressed as the following
simple bilevel problem [Dempe et al., 2010]:

minLaux(θ) s.t. θ ∈ arg minLmain(θ). (2)

Problem (2) is a constrained optimization problem
on the set of minimizers of Lmain, a high-dimensional
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set with no clear structure, except when Lmain is
convex, in which case several provably convergent
approaches have been proposed [Sabach and Shtern,
2017, Gong and Liu, 2021, Cao et al., 2023]. How-
ever, to the best of our knowledge, these methods
have not been applied to training neural networks,
where these convergence guarantees do not hold.

Connections to Multi-Task Learning. The
problem of simultaneously optimizing the main and
auxiliary loss is also a special case of multi-task
learning [Caruana, 1997] involving only two tasks.
Many of the approaches proposed to tackle this
problem more efficiently rely on the idea of gradient
surgery, which stitches together and possibly modify
the gradients of both losses when they disagree [Yu
et al., 2020]. While multi-task methods tend to
treat the two losses equally, we are interested in
our work in cases where there is a clear hierarchy
between the two.

Two types of auxiliary losses. Auxiliary ob-
jectives largely fall into two categories. The first
consists of objectives that guide optimization of the
main loss but are not intrinsically meaningful and,
therefore, are only useful to reach a better test loss.
They are sometimes called inductive biases. Weight
decay, Laux = 1

2∥ · ∥
2, fits this description: using

it improves generalization, but practitioners rarely
care about the final norm of their parameters.

The second category of auxiliary losses of partic-
ular interest in this paper are those that quantify a
desirable property, and where trading off an increase
in the main loss for a decrease in the auxiliary loss
might be interesting. For instance, consider the case
of a main objective that is a loss on a large dataset
and an auxiliary objective that is a loss on a smaller
specialized dataset, where the goal is to generalize
on both sets. Practitioners care about both of these
values; the auxiliary loss not only helps generalize
on the large training set but is an intrinsically
meaningful objective. This is similar to the multi-
task learning setting, where each task corresponds
to a learning problem. Another example is in
training neural networks that are also smooth, i.e.,
with a small Lipschitz constant. This is beneficial
for the networks’ robustness [Cisse et al., 2017]. To
enforce this during training, one can use a proxy for
the Lipschitz constant of the neural network as an
auxiliary loss [Tsuzuku et al., 2018, Terjék, 2019].

Contributions. In Section 2, we introduce

Bloop (BiLevel Optimization with Orthogonal
Projection). Our method is inspired by the simple
bilevel problem, but similar to the regularization
approach, has a tunable hyperparameter, λ, to
control the trade-off between losses. At the heart of
the method is a projection of the auxiliary gradient
to be orthogonal to the primary loss gradient.
We first provide a theoretical justification for this
aproach in the full-batch case. We then describe
how to carefully extend Bloop to the stochastic
case, in order to retain most of the full-batch
properties. We propose using an Exponential
Moving Average (EMA) of the training gradient
to estimate the projection direction.

In Section 3, we analyze the stationary points
of our method and show that they are first-order
stationary points of the simple bilevel problem. We
also demonstrate the convergence of the iterates
towards the stationary points of the training loss
under the appropriate hypothesis on the step size
and on the EMA accumulation factor. Our results
clearly highlight the importance of the EMA.

Section 4 discusses related works from the litera-
ture.

In Section 5, we demonstrate the promises of our
method on a variety of tasks: imposing an explicit
bias on the network parameters during training,
multi-task learning, and training language models
to perform well on a large generic dataset and on
a small specific dataset. In our experiments, Bloop
exhibits a better Pareto front than both the mixed
method and multi-task methods that do not use an
EMA.

2 The Bloop Algorithm

In this section, we introduce Bloop, a simple and
intuitive iterative algorithm to optimize two losses
simultaneously. We then discuss how the method
can be extended to address stochasticity in the
gradients, and multi-level optimization.

2.1 Full-batch setting and main intu-
ition

At each step, Bloop builds a parameter update
direction d ∈ Rp which is then fed to an optimizer
(e.g. Adam Kingma and Ba, 2014) in order to
converge to the solution of Equation 2. For instance,
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the gradient descent optimizer would iterate θ ←
θ − ηd. At the current iterate θ, we let gmain =
∇Lmain(θ) and gaux = ∇Laux(θ).

We design our direction from first principles. We
seek a direction in the span of these two gradients,
d = ωgmain + λgaux with ω and λ two scalars. Our
primary goal is to make progress on the main loss
at the same speed as gradient descent; hence we
target Lmain(θ − ηd) ≃ Lmain(θ − ηgmain).

At the first order in the step-size η, we see that
the component of the direction in the direction
gmain should be the same as that of gmain, i.e., we
want ⟨d, gmain⟩ = ∥gmain∥2. This gives the equation
(1 − ω)∥gmain∥2 = λ⟨gmain, gaux⟩. Our secondary
goal is the optimization of the auxiliary loss, hence
we impose that the coefficient in front of gaux is
positive, i.e. that λ > 0. These two conditions
alone give us our update rule: we find that such a
direction is necessarily

d = gmain + λπ(gaux, gmain), where

π(gaux, gmain) = gaux −
⟨gaux, gmain⟩
∥gmain∥2

gmain

(3)

Hyperparameter λ ≥ 0 trades-off the two objec-
tives, and π(gaux; gmain) is the projection of gaux
orthogonal to gmain. This direction admits an in-
tuitive explanation: since we primarily want to
optimize the main loss, we follow gmain; the projec-
tion part is aligned with gaux, and does not interfere
with gmain thanks to the orthogonality condition.
Moreover, the fact that ⟨d, gmain⟩ = ∥gmain∥2 means
that following this direction does not change the
optimization with respect to Lmain when step-sizes
are small. Specifically, we write down the Taylor
expansion at the first order

Lmain(θ − ηd) ≃ Lmain(θ)− η⟨gmain, d⟩,
(Orthogonality) ≃ Lmain(θ)− η∥gmain∥2.

(4)

This is the same as standard gradient descent where
d = gmain. Figure 1 illustrates the geometric princi-
ple of Bloop.

2.2 Stochastic extension for large-
scale problems

When dealing with neural networks trained over
large datasets, the losses are written as sums over
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Bloop direction

Figure 1: Principle of the Bloop method: the di-
rection we follow is the sum of the gradient of the
main loss gmain, and of the projection of the gradi-
ent of the auxiliary loss, orthogonal to gmain. This
enforces that, at the first order, following this direc-
tion yields the same decrease in Lmain as following
gmain.

many samples:

Lmain(θ) =
1

n

n∑
i=1

Li
main(θ), Laux(θ) =

1

m

m∑
j=1

Lj
aux(θ).

In practice, we can only use a mini-batch of gradi-
ents to make progress on the problem, as the com-
putation of the full-batch gradient of these losses is
out of the question. Concretely, we assume that we
have computed the two mini-batch gradients gbatchmain ,
gbatchaux , which are by design unbiased estimators of
the full-batch gradients:

E[gbatchmain ] = gmain and E[gbatchaux ] = gaux.

In the above, the expectation is taken over the ran-
domness of the mini-batch choice. Extending the
direction d to this stochastic setting is not straight-
forward, and careful design makes a big difference
in the final performance. A key insight behind stan-
dard, single-level, stochastic gradient descent on
Lmain is that, for small step sizes, it has on average
the same decrease as gradient descent:

E[Lmain(θ − ηgbatchmain )] ≃ Lmain(θ)− ηE[⟨gmain, g
batch
main ⟩]

(Linearity of dot) ≃ Lmain(θ)− η⟨gmain,E[gbatchmain ]⟩
(Unbiased gradient) ≃ Lmain(θ)− η∥gmain∥2

We want to preserve this behavior as much as pos-
sible. A first idea is simply to plug the mini-batch
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gradients in Equation 3, i.e. consider

dbatchsimple = gbatchmain + λπ(gbatchaux ; gbatchmain ).

The pitfall of projecting on stochastic
gradients. The main issue with the above method
is that the projection is nonlinear with respect to its
second argument: in general, E[π(gbatchaux ; gbatchmain )] ̸=
π(gaux; gmain). As a consequence, it is not true
anymore that ⟨dbatchsimple, gmain⟩ = ∥gmain∥2, even in
expectation, which in turn leads to a behavior
starkly different from SGD on Lmain. We can im-
prove this intuition using a simplified model of the
training dynamics. Assume that gbatchmain = gmain+σε,
where ε ∼ N (0, I) is the random gradient noise,
and σ > 0 is the noise variance. In the limit where
σ is large in front of ∥gmain∥, we get that on average
Eε[π(gbatchaux ; gbatchmain )] = (1 − 1

p )gbatchaux with p the
parameter’s dimension. Therefore, the simple direc-
tion is on average dbatchsimple = gbatchmain + λ(1− 1

p )gbatchaux .
We recover the same direction as that of the mixed
training method, with a new λ′ = λ(1 − 1

p ), and
the orthogonalization becomes useless.
The EMA solution. The previous analysis in-

dicates that we need a better estimate of gmain

than the mini-batch gradient. A simple solution
to this is to use an Exponential Moving Average
(EMA) of the previous batch gradients, gEMA

main , which
is updated at each iteration by doing gEMA

main ←
(1 − ρ)gEMA

main + ρgbatchmain , with ρ ∈ [0, 1] a parame-
ter that controls the speed of the EMA. This can
be a much better estimator of gmain than gbatchmain ,
because it averages gradients over the optimization
trajectory, drastically reducing the variance. In-
tuitively, we need to accumulate the EMA faster
than the speed of the optimization algorithm that
updates the parameters. Hence, ρ should be greater
than the step-size η. We use this gradient EMA
solely in the projection, and propose the direction

dbatch = gbatchmain + λπ(gbatchaux ; gEMA
main ) (5)

We do not replace the first gbatchmain in the formula
by the EMA, because dbatch is an optimization di-
rection, that is then plugged into any optimizer like
Adam, which will use a smart adaptive step to reach
the solution quickly. Since the EMA does not de-
pend on the current batch, and the projection is lin-
ear with respect to its first argument, we have that

Algorithm 1 The Bloop algorithm

Input: Hyperparameter λ, EMA parameter ρ,
initial parameters θ, optimizer optim, optimizer
state s, initial EMA gEMA

main

for t = 0, . . . , T − 1 do
Sample gradients gbatchmain , gbatchaux

Compute the Bloop direction dbatch using Equa-
tion 5
Update θ, s← optim(dbatch, θ, s)
Update EMA: gEMA

main ← (1− ρ)gEMA
main + ρgbatchmain

end for

E[dbatch] = gmain + λπ(gaux; gEMA
main ), and as a conse-

quence, the expected decrease on Lmain following
this direction is E[Lmain(θ− ηdbatch)] ≃ Lmain(θ)−
η∥gmain∥2 + ηλ⟨π(gaux; gEMA

main ), gmain⟩. When the
EMA accumulation gEMA

main is close to gmain, the last
term becomes small because the two vectors are
approximately orthogonal. Thus,

E[Lmain(θ − ηdbatch)] ≃ Lmain(θ)− η∥gmain∥2,

and we recover the same behavior as SGD on Lmain.
The new direction is no longer in the span of (gbatchmain ,
gbatchaux ) because it also has a component in the di-
rection of gEMA

main .
The theory presented in the next section clearly

highlights the importance of this EMA, and in our
experiments, we find that this simple EMA modifi-
cation drastically improves the performance of the
algorithm on a variety of tasks. In fact, we found
that in many cases, standard multi-task methods
without EMA have very similar performances to the
mixed training method.

Algorithm 1 gives the full pseudo-code of the
Bloop method. We use optax-like notations Deep-
Mind et al. [2020] for the optimizer, which is ab-
stracted as a method that, given a direction d, cur-
rent parameters θ and a state s containing all its
hyper-parameters like learning rate and internal
state like EMAs for adaptive methods, returns the
updated parameters θ and updated state s.

2.3 Extension to multi-level hierar-
chical optimization

Our algorithm can be extended to multi-level opti-
mization, where we have more than two losses and
they have a hierarchy. For simplicity, we present
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here the case with 3 losses: Lmain, L1
aux and L2

aux.
The hierarchy means that we minimize Lmain, and
then, among this set of minimizers, we minimize
L1
aux. Finally, we minimize L2

aux among this new
set. This gives the trilevel optimization problem:

minL2
aux(θ) s.t.

θ ∈
(
arg minL1

aux(θ) s.t. θ ∈ arg minLmain(θ)
)
(6)

Our algorithm can be straightforwardly extended to
this case by following a Gram-Schmidt like orthogo-
nalization process: letting gmain, g1aux and g2aux the
gradients of the three losses, we go in the direction

d = gmain+λ1π(g1aux; gmain)+λ2π(g2aux; (gmain, g
1
aux))

where π(g2aux; (gmain, g
1
aux)) is the projection of g2aux

on the orthogonal of the span of (gmain, g
1
aux).

Thanks to orthogonality, this direction satisfies
⟨d, gmain⟩ = ∥gmain∥2; hence in terms of opti-
mization with respect to Lmain, the direction be-
haves just like gmain, and ⟨d, g1aux⟩ = ⟨gmain +
λ1π(g1aux; gmain), g1aux⟩; hence in terms of optimiza-
tion with respect to L1

aux, the direction behaves just
like the bilevel direction d introduced in Equation 3.

3 Theoretical Analysis

This section aims at understanding the theoretical
properties of the proposed direction in the full-batch
and the mini-batch settings by linking it with the
simple bilevel problem (Equation 2). All the proofs
are deferred to Appendix A.

3.1 Approximate stationary points of
Bloop

At a solution to the simple bilevel problem, we have
∇Lmain(θ) = 0, hence the solutions to the bilevel
problem are also solutions of

minLaux(θ) s.t. ∇Lmain(θ) = 0.

The Lagrangian for this equation is L(θ, v) =
Laux(θ)− ⟨v,∇Lmain(θ)⟩ with v ∈ Rp the Lagrange
multiplier. Accordingly, the first-order optimality
conditions are gmain = 0 and that there exists v such
that gaux = ∇2Lmain(θ)v. A first natural question
to ask is whether the direction that we propose in

Equation 3 cancels at these points. However, the
projection is ill-defined when gmain = 0. We thus
assume that ∥gmain∥ is positive hereinafter and fo-
cus on the case where d is small but non-zero.1 To
analyze this, we introduce the following assumption.

Assumption 1 (Local Error Bound [Luo and Tseng,
1993]). There exists c > 0 such that for ε small
enough and for any θ satisfying ∥gmain(θ)∥ ≤ ε, we
have

d(θ,∇L−1
main({0})) ≤ c∥gmain∥.

This local error bound condition is implied by a
local Polyak-Lojasiewicz inequality, which is verified,
for instance, for overparameterized least-squares and
some neural network loss functions [Liu et al., 2022].
With this in hand, we are now ready to present our
result regarding the approximate first-order station-
ary points of the full-batch Bloop method.

Proposition 1 (Stationary points). If d in Equa-
tion 3 is such that ∥d∥ ≤ ε, then we have ∥gmain∥ ≤
ε. Moreover if Assumption 1 holds, the Hessian of
Lmain is M−Lipschitz, and ε is small enough, then
there exists v ∈ Rp such that

∥gaux −∇2Lmain(θ)v∥ ≤ (λ−1 +Mc2∥gaux∥/2)ε.

Conversely, given a point θ∗ that satisfies the first
order optimality conditions of Equation 2, we have
that limε→0 d(θ∗ + εv) = 0 where v is the Lagrange
multiplier.

In short, Proposition 1 relates the (approximate)
stationary points of Bloop to the (approximate) sta-
tionary points of the bilevel problem. Moreover, as
an immediate consequence of the proposition, we
see that we additionally assume Laux to be Lips-
chitz continuous, the limit points of Bloop must be
stationary points of the simple bilevel problem.

3.2 Convergence of stochastic Bloop

Our main theorem is a convergence result of the
stochastic version of Bloop. It clearly highlights
the role of the EMA: without EMA, obtaining such
results would be impossible.

1Although we can simply set d = λgaux when gmain = 0,
the study of this particular case is straightforward and gives
little insight on the general case. We therefore omit it here.
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Theorem 2 (Convergence of Bloop). Consider the
Bloop method in the stochastic setting with the SGD
optimizer. Let ρ be the EMA parameter and η be the
step-size of the algorithm. Assume that (i) Lmain

is L-smooth, (ii) the stochastic directions are uni-
formly bounded, i.e., ∥dt∥ ≤ D for all t, (iii) the
variance of the gradients of Lmain is bounded with
Ei[∥∇Li

main(θ) − ∇Lmain(θ)∥2 ≤ C2, and (iv) the
auxiliary gradients are bounded as ∥∇Laux(θ)∥ ≤ B.
Then, for a number of iterations T , taking a step
size η ≃ T− 3

4 and an EMA parameter ρ ≃ η 2
3 gives

1

T

T−1∑
t=0

E[∥∇Lmain(θt)∥2] = O(T− 1
4 )

If Lmain is additionally µ-PL [Karimi et al., 2016],
we have

E[Lmain(θT )−minLmain] ≤ (1− 2ηµ)TLmain(θ0) +O(η
1
3 ).

Theorem 2 demonstrates the convergence of
stochastic Bloop either in terms of the expected
gradient norm or the expected optimiality gap. In
spirit, this suggests that the Bloop iterate would end
up being arbitrarily close to the stationary points
of Lmain. The theorem also instructs us on the role
of the EMA coefficient ρ compared to the learning
rate η. We see that we should take ρ to be slightly
larger than η: in this regime, the gradient EMA
gEMA
train is a good approximation of gtrain.

Also note that this result differs significantly from
those obtained in the multi-task learning literature,
which show convergence of the algorithms to points
where either both losses are minimized or where
their gradients are opposed [Yu et al., 2020]. Here,
even in the extreme case where losses are the exact
opposite (Laux = −Lmain), full-batch Bloop prov-
ably converges to the minimizers of Lmain under
PL condition. This is not a surprise since in that
case, the projection π(gaux, gmain) cancels and the
iterates of Bloop are that of gradient descent on
Lmain.

3.3 Conditioning compared to regu-
larization method

We illustrate below that the regularization method
can lead to poorly conditioned problems, resulting
in hard optimization problems, while our method

alleviates this. For this, we take the following simple
2D example, where θ = (a, b):

Lmain(θ) =
1

2
a2 , Laux(θ) =

1

2
((a− 1)2 + b2).

The solution to the bilevel problem is θ∗ = 0,
while the solution to the regularized problem is
θ = (α/(1 + α), 0). We recover the same solution
in the limit α → 0. However, the Hessian of the
regularized problem is diag(1 + α, α); hence the
conditioning of the regularized problem is 1 + 1/α
which goes to infinity as α → 0. In view of this,
the regularized method either converges to a
point far from the solution (α large) or converges
slowly (α small). On the contrary, the projection
method goes in the direction d = (a, λb). This is
equivalent to gradient descent on a quadratic loss
with the correct θ∗ minimizer — regardless of λ
— and Hessian equal to diag(1, λ), which is well
conditioned when λ is not too far from 1.

4 Related Works

Our work sits at the intersection of two fields of
machine learning: the solution of the simple bilevel
problem and multi-task learning. There are however
a number of differences between the two. In partic-
ular, in the multi-task learning problem each task
is considered jointly whereas in the bilevel setting
there is a hierarchy to the primary and auxiliary
objectives. Another key difference is in the notion
of task versus auxiliary objective. A task typically
requires a dataset as input, whereas an auxiliary
objective is more general and can incorporate losses
without the need for data, such as the L2 norm in
weight decay.

Given the similarity, a number of gradient surgery
methods that have been proposed in multi-task lit-
erature can be used to minimize both the main and
the auxiliary objectives. We summarize the most
relevant ones in Table 1. Some works try to leverage
the auxiliary loss to obtain improvements on the
main loss only [Du et al., 2018, Dery et al., 2021].

The Dynamic Barrier (DB) algorithm of Gong
and Liu [2021], as detailed in Table 1, uses a similar
orthogonal projection as in our proposal. It provably
solves the bilevel problem. However, DB includes an
additional barrier function, ϕ e.g. ϕ = ∥gaux∥2, to
control the trade-off between objectives, whereas we
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Table 1: Comparison of similar gradient surgery
methods for the two tasks setting. For brevity,
we write gm := gmain and ϕ := cos(gm, gaux) =
⟨gm,gaux⟩

∥gm∥∥gaux∥ . (̄·) indicates that EMA has been applied,

and ψ is a dynamic barrier function described in
[Gong and Liu, 2021].

Method Modified Direction

Bloop (ours) gm + λ
(
gaux − ⟨gaux,ḡm⟩

∥ḡm∥2 ḡm
)

Mixed (Regularized) gm + λgaux

A-GEM
Chaudhry et al. [2018]

gm − min(0,⟨gm,gaux⟩)
∥gaux∥2

gaux

Dynamic Barrier
Gong and Liu [2021]

gaux +max(0, ψ(θ)−⟨gm,gaux⟩
∥gm∥2 )gm

MTL-MOO
Sener and Koltun [2018]

⟨gm−gaux,gaux⟩
∥gm−gaux∥2

gm+

(1− ⟨gm−gaux,gaux⟩
∥gm−gaux∥2

)gaux

Cosine Similarity
Du et al. [2018]

gm + gaux max(0, ϕ)

GradVac
Wang and Tsvetkov [2021]

gm +
∥gm∥

(
ϕ̄
√

1−ϕ2−ϕ
√

1−ϕ̄2
)

∥gaux

√
1−ϕ̄2∥

PCGrad
Yu et al. [2020]

gm −min(0, ⟨gaux, gm⟩) gm
∥gm∥2

+gaux −min(0, ⟨gaux, gm⟩) gaux
∥gaux∥2

Meta-Balance
He et al. [2022]

gm + ∥gm∥
∥gaux∥gaux

use a scalar, λ, similar to regularization methods, for
this purpose. The other main differences between
our proposal and the DB method are that we al-
ways use the projection, rather than conditioning on
⟨gm, gaux⟩, and most importantly, we use an EMA
of main gradients to compute the projection, rather
than the stochastic gradient. With ϕ = ∥gaux∥2
and without the conditional update or EMA, the
approaches would be the same. Gong and Liu [2021]
do not discuss stochastic extensions of the method,
which is of key importance to practitioners.

Yu et al. [2020] propose PCGrad, which, as shown
in Table 1, can be regarded as a symmetrized version
of our method. Unlike our method, the projection is
again conditioned. Concretely, the parameters are
updated in the direction of the combined gradient
gmain + gaux when they are aligned, and projections
are performed when this is not the case. The gradi-
ent alignment condition and the symmetry between

the gradients implies that the algorithm does not
solve the bilevel problem; instead [Yu et al., 2020,
Thm.1] show that it minimizes the sum of the two
losses or finds a point where gaux and gmain go in
opposite directions. Similarly to the DB method,
no EMA is used in the projection.

5 Experiments

In this section we demonstrate the effectiveness
of Bloop via numerical experiments on problems of
three distinct categories: the use of auxiliary loss for
imposing an explicit bias, multi-task learning, and
joint dataset training. For each of these experiments,
we use an optimizer with hyperparameters that work
well for the minimization of solely the main loss,
and never change these hyperparameters. As for
the EMA parameter of Bloop, we take it as ρ = 0.01
in all experiments unless otherwise stated. Further
experimental details can be found in Appendix B.

Note that Bloop incurs a negligible training cost
compared to the standard regularized training, as
it only requires two additional dot products in the
parameter space.

5.1 Baselines and evaluation

We compare Bloop (Algorithm 1) to other popular
gradient surgery methods that follow a similar de-
sign. We focus on the stochastic setup where we
only have access to the gradients over a mini-batch
of samples at each iteration.

Mixed. This method minimizes the regularized
objective Lmain + λLaux with the direction d =
gbatchmain + λgbatchaux .

Dynamic Barrier (DB). The original formu-
lation of the DB method requires both an esti-
mate of a lower bound on Lmain, as well as an
estimate of Lmain(θ), which are cumbersome to
estimate in deep learning setups. We therefore
forgo this part of the algorithm and instead in-
corporate the scaling factor λ to control the trade-
off. We also replace the gradients in the original
method by stochastic gradients. This results in
the update direction d = µgbatchmain + λgbatchaux where

µ = max
(

1− λ ⟨gbatch
main ,gbatch

aux ⟩
∥gbatch

main ∥2 , 0
)
.

PCGrad. Being motivated from a multi-task
perspective, the original formulation of PCGrad
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(a) Training a MLP on MNIST with an auxiliary loss
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(b) Training a ResNet50 on Imagenet with squared L2
norm as the auxiliary loss.

Figure 2: Trade-offs between the main and the auxiliary objectives in problems where the auxiliary loss is
used to impose an explicit bias on the neural network. The symbols correspond to the parameters reached
at the end of training and form a Pareto front, the transparent curves are the training trajectories. Bloop
achieves a better trade-off than the other methods, which all perform similarly here.

does not use the scaling factor λ. By incorpo-
rating this factor, the update direction becomes
d = gbatchmain + λgbatchaux if ⟨gbatchmain , g

batch
aux ⟩ > 0, and

d = π(gbatchmain , g
batch
aux ) + λπ(gbatchaux , gbatchmain ) otherwise.

Evaluation of the algorithms. To provide a
comprehensive insight into how the algorithm design
affects the training dynamics, we report the metrics
on both the training and the test sets. Moreover, we
trace the evolution of these metrics along training.

Pareto fronts. All algorithms that we consider
here have thus a parameter λ that trades-off between
the train and the auxiliary losses. After a fixed
number of iterations, the algorithm algo finds a
final parameter θalgo(λ) that explicitly depends on λ.
Generally, Lmain(θalgo(λ)) is a decreasing function
of λ while Laux(θalgo(λ)) is increasing with λ. We
can then vary λ to get the set of pairs P(algo) =
{(Lmain(θalgo(λ)), Laux((θalgo(λ)))| λ ≥ 0}, called
the Pareto front of algo.

5.2 Imposing an explicit bias during
training

To begin with, we first investigate the situation
where the auxiliary objective is used to enforce
a certain desirable property (bias) on the neural
network.

Training smooth neural networks. Following
our discussion in Section 1, we explore the poten-
tial of Bloop in training smooth neural networks.
For this, we use the MNIST dataset LeCun et al.
[2010] and an MLP of two hidden layers. With

this minimal architecture, a simple induction ar-
gument shows that the Lipschitz constant of the
network is upper-bounded by

∏L
l=1 ∥Wl∥2, where

Wl is the weight matrix of the l−th linear layer,
∥ · ∥2 is the spectral norm, and L = 3 is the num-
ber of layers. We thus define the auxiliary loss as
Laux = log(

∏L
l=1 ∥Wl∥2). The use of logarithm here

makes training easier. On the other hand, we use
the standard cross-entropy loss as the main loss.

Training networks with small weights. For
this experiment, we train a ResNet50 using stan-
dard cross-entropy loss on Imagenet, and try to
simultaneously achieve a low ℓ2 norm of the param-
eters of the network. The auxiliary loss is therefore
Laux(θ) = 1

2∥θ∥
2. In that case, the mixed method

is similar to training with a weight decay λ.

Results. The results are reported in Figure 2.
We see Bloop induces training trajectories that are
fundamentally different from all other methods, and
leads to better Pareto fronts when trading off the
main and the auxiliary training losses. Meanwhile,
whether this translates to a clear gain in test per-
formance is problem-dependent — among these two
experiments, this is more the case for the Imagenet
example.

5.3 Multi-task learning

As discussed in Section 1, multi-task learning rep-
resents another typical scenario in which such aux-
iliary objectives emerge. Following Hotegni et al.
[2023], we construct a Cifar10Mnist dataset by over-
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Figure 3: Trade-off between the performances in the
Cifar10Mnist multi-task learning problem. Bloop
gives a better Pareto front.

lapping digits from MNIST on images from CIFAR-
10 Krizhevsky et al. [2009] — see Figure 7 in Ap-
pendix B for an illustration. The main and the
auxiliary tasks correpond respectively to identifying
the label for the background CIFAR-10 image and
for the MNIST digit. There is a natural hierachy
between the two tasks here because identifying the
CIFAR-10 label is more difficult than identifying the
MNIST one. For this dataset, we train a ResNet18
with two classification heads to minimize the two
cross-entropy losses. In this experiment, we found
that taking ρ = 0.001 for Bloop gave better results.

Results. As shown in Figure 3, the trajectories
of Bloop are again much more different than those
of the other methods, which share quite similar
behaviors. Moreover, Bloop gets a slightly improved
Pareto front over those methods.

5.4 Joint training on two datasets

With the advent of large foundation models, it be-
comes increasingly common to train a model on
multiple data sources Gunasekar et al. [2023], Sun
et al. [2023], Xu et al. [2023], Oquab et al. [2024].
Yet, these datasets could have intrinsically different
characteristics, and it may be natural to prioritize
one over another, for instance when one dataset
has far more samples than another. We explore the
benefit of Bloop in such multi-dataset setting. Our
experimental setup is similar to that of Grangier
et al. [2023].
Transformer pre-training. We consider the

problem of performing next-token-prediction with
a decoder-only transformer on text data. The net-
work is a transformer with 12 decoder layers, 8
attention heads, a residual dimension of 256, and
a feed-forward latent dimension of 1024. The main

loss corresponds to the prediction loss over a large
pre-training dataset, while the auxiliary loss cor-
responds to that on a smaller but higher-quality
dataset. Due to the lack of data, training only on
the small high-quality dataset leads to severe over-
fitting and poor performance; hence, we resort to
training on both datasets, using the proposed base-
lines or Bloop. For the training set, we use 30M
examples from the c4 dataset [Raffel et al., 2020],
while the auxiliary loss corresponds to 20K examples
from the RCV-1 dataset [Lewis et al., 2004].

Translation. In this experiment, we train a net-
work to translate English into German. The network
is a transformer with 6 encoder layers and 6 decoder
layers, 16 attention heads, a residual dimension of
1,024, and a feed-forward latent dimension of 4,096.
Like in the pre-training experiment, we have a large
generic dataset, the Paracrawl dataset [Bañón et al.,
2020], with 36m sentence pairs, which defines the
main loss. The auxiliary loss is the loss over a
smaller but higher quality dataset, the 2009-2019
WMT dataset, yielding 10k sentence pairs [Farhad
et al., 2021]. We use the 2020 WMT dataset (2k
pairs) as an evaluation set.

Results. Figure 4b displays the results. We ob-
serve siginificantly improved results for Bloop, which
has once again a better Pareto front, and achieves
smaller pre-training loss. These gains are kept when
looking at the evaluation losses.

5.5 Role of the EMA

We investigate the importance of the EMA param-
eter ρ in Bloop. As already seen in Section 3, it
is critical from a theoretical point-of-view for the
algorithm’s convergence. We further illustrate this
via the transformer pre-training experiment with
a fixed λ = 0.2. Figure 5 displays the results. We
see that when the EMA is too small (ρ = 0.001),
the value of gEMA

main is outdated compared to the cur-
rent value of the gradient gmain, and therefore, the
performance on both the main and auxiliary losses
is bad. On the contrary, taking a too-large EMA
(ρ = 0.9) means that gEMA

main has a high variance, and
we recover a trajectory extremely similar to that
of the mixed method. Choices between these two
extremes (ρ = 0.01, or ρ = 0.1) lead to a tradeoff
between main and auxiliary loss.
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(a) Results on the language modeling task. The main,
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(b) Results on the translation task. The main pre-
training loss is the translation loss over the large
paracrawl dataset, while the auxiliary specialization
loss is the translation loss over the small WMT dataset.

Figure 4: Trade-offs between the main and the auxiliary objectives in problems in natural language
processing experiments with transformer models, where the main loss is the loss over a large dataset and
the auxiliary loss is a loss over a small dataset that can be overfitted easily. We observe that Bloop gets
a significantly better Pareto front than all other methods, which perform similarly to the mixed method.
Bloop gains in terms of optimization on the training losses transfer to the evaluation losses.
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Figure 5: Effect of the EMA parameter ρ on Bloop’s
performance. We use the same next-token predic-
tion losses as in Figure 4a, and display the training
curves for a fixed λ = 0.2.

Discussion

A striking phenomenon that we observe in all our
experiments is that PCGrad and DB work very
similarly to the mixed method. We posit that this
observation is due to the high gradient variance
coming from the main loss, which is also what our
theory predicts. Adding an EMA to reduce this
variance leads to the Bloop method, which here has
a different behavior to the other methods, often
leading to improved Pareto fronts.

In the Appendix C, we describe an experiment
where Bloop does not work better than the other
methods. We attempted to train a ResNet to have
a good performance on Imagenet and Cifar10, with

a shared trunk and two classification heads. We
found that all methods performed equally well; in
that case, Bloop leads to the same Pareto front as
the other method. Yet, once again, PCGrad and DB
have the same practical performance as the mixed
method.

Overall, adding an EMA to reduce variance in
the projection direction is a simple idea that can
have a big impact on gradient surgery methods.
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Appendix

A Convergence analysis

In this appendix we provide proofs for the theoretical results of Section 3.

A.1 Proof of Proposition 1

By orthogonality, we have ∥d∥2 = ∥gmain∥2 + λ2∥π(gaux; gmain)∥2. This implies immediately ∥gmain∥ ≤ ε
and ∥π(gaux; gmain)∥ ≤ ελ−1 provided that ∥d∥ ≤ ε.

Let us next consider the case where Assumption 1 holds and that the Hessian of Lmain is M-Lipschitz con-
tinuous. With the local error bound, i.e., Assumption 1, we know there exists θ∗ such that ∇Lmain(θ∗) = 0
and ∥θ − θ∗∥ ≤ c∥gmain∥. With the M-Lipschitzness of ∇2Lmain, we can then bound the norm of
r = ∇Lmain(θ)−∇2Lmain(θ)(θ − θ∗) by

∥r∥ ≤ M

2
∥θ − θ∗∥2 ≤ Mc2

2
∥gmain∥2 .

We now claim that the desired inequality holds true with

v =
⟨gaux, gmain⟩
∥gmain∥2

(θ − θ∗).

For this, we decompose

⟨gaux, gmain⟩
∥gmain∥2

gmain = ∇2Lmain(θ)v +
⟨gaux, gmain⟩
∥gmain∥2

r

Subsequently,

∥gaux −∇2Lmain(θ)v∥ ≤
∥∥∥∥gaux − ⟨gaux, gmain⟩

∥gmain∥2
gmain

∥∥∥∥ +

∥∥∥∥ ⟨gaux, gmain⟩
∥gmain∥2

r

∥∥∥∥
≤ ∥π(gaux; gmain)∥+

Mc2∥gaux∥∥gmain∥
2

≤
(
λ−1 +

Mc2

2
∥gaux∥

)
ε.

Reciprocally, in the direction of v we have gmain = ε∇2Lmain(θ)v+o(ε) and gaux = ∇2Lmain(θ)v+O(ε).
This indicates that gmain = O(ε) and π(gaux; gmain) = O(ε), which in turn shows that the sum of the two
goes to 0 when ε tends to 0.

A.2 Proof of Theorem 2

Here, Lmain and Laux are the empirical risks

Lmain(θ) =
1

n

n∑
i=1

Li(θ) and Laux(θ) =
1

m

m∑
j=1

L′
j(θ).
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We consider the Bloop method with SGD, which has an EMA gtEMA and parameters θt which are updated
following

Sample i, j ∼ Uniform

gt+1
EMA = (1− ρ)gtEMA + ρ∇Li(θ

t)

dt = ∇Li(θ
t) + λπ(∇L′

j(θ
t), gtEMA)

θt+1 = θt − ηdt

Our analysis works by controlling two quantities: the distance from the EMA to the full-batch train
gradient

ϕt1 = E
[
∥gt+1

EMA −∇Lmain(θt)∥2
]

and the train loss
ϕt2 = E

[
Lmain(θt)

]
.

Control of the EMA. For the EMA, we get by expanding

ϕt+1
1 = E

[
∥gtEMA − ρ(gtEMA −∇Li(θ

t))−∇Lmain(θt)∥2
]

= (1− ρ)2E
[
∥gtEMA −∇Lmain(θt)∥2

]
+ ρ2E

[
∥∇Li(θ

t)−∇Lmain(θt)∥2
]

≤ (1− ρ)E
[
∥gtEMA −∇Lmain(θt)∥2

]
+ ρ2C2

where C2 upper bounds the train gradients variance and where ρ < 1. Let a = gtEMA −∇Lmain(θt−1)
and b = ∇Lmain(θt−1)−∇Lmain(θt). Since the inequality ∥a+ b∥2 ≤ (1 + δ)∥a∥2 + (1 + δ−1)∥b∥2 holds
true for all δ, we have specifically that

∥gtEMA −∇Lmain(θt−1)∥2 ≤ (1 + δ)ϕt1 + (1 + δ−1)L2η2∥dt−1∥2

for δ = ρ
2 . Using (1− ρ)(1 + ρ

2 ) ≤ 1− ρ
2 then gives the descent lemma on the EMA:

ϕt+1
1 ≤

(
1− ρ

2

)
ϕt1 + ρ2C2 +

2L2η2

ρ
∥dt−1∥2.

Next, we bound crudely ∥dt−1∥ ≤ D, and equalize the last two terms, i.e. take ρ =
(

2L2D2

C2

) 1
3

η
2
3 , so

that the descent on the EMA becomes

ϕt+1
1 ≤

(
1− ρ

2

)
ϕt1 + 2ρ2C2

which in turn implies that
ϕt1 ≤ 4ρC2.

Control of the loss. The L-smoothness of Lmain and the fact that Ei,j [d
t] = ∇Lmain(θt) +

λπ(∇Laux, g
t
EMA) gives:

ϕt+1
2 ≤ ϕt2 − η∥∇Lmain(θt)∥2 − ηλ⟨π(∇Laux, g

t
EMA),∇Lmain(θt)⟩+

Lη2

2
∥dt∥2.

We omit expectation from the above formula for the ease of presentation, and we will continue doing
so for this part of the proof. The annoying middle term is controlled by

−ηλ⟨π(∇Laux, g
t
EMA),∇Lmain(θt)⟩ = −ηλ⟨π(∇Laux, g

t
EMA),∇Lmain(θt)− gtEMA⟩

≤ ηλB∥∇Lmain(θt)−∇Lmain(θt+1)∥+ ηλB∥∇Lmain(θt+1)− gtEMA∥
≤ η2λLB∥dt∥+ ηλB∥∇Lmain(θt+1)− gtEMA∥
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where B upper bounds ∥∇Laux∥. The last E[∥dt∥2] is simply bounded by D2. Hence we get the descent
lemma on the train loss:

ϕt+1
2 ≤ ϕt2 − η∥∇Lmain(θt)∥2 + ηλB

√
ϕt1 + η2

(
LD2

2
+ λLBD

)
.

Plugging the rate for ϕt1, we finally get

ϕt+1
2 ≤ ϕt2 − η∥∇Lmain(θt)∥2 + η

4
3C1 + η2C2

for some constants C1, C2 ≥ 0. In the above we have also used that

E[∥∇Lmain(θt+1)− gtEMA∥]2 ≤ E[∥∇Lmain(θt+1)− gtEMA∥2].

Taking η ≤
(

C1

C2

) 3
2

ensures that the last term is smaller than the previous, yielding the simple inequality:

ϕt+1
2 ≤ ϕt2 − η∥∇Lmain(θt)∥2 + 2η

4
3C1.

We now have two kinds of results depending on the context:

Non-convex result. Without further assumption, summing the previous inequalities for t = 0 . . . T − 1
gives

1

T

T−1∑
t=0

E[∥∇Lmain(θt)∥2] ≤ Lmain(θ0)

ηT
+ 2η

1
3C1.

Hence, taking η ≃ T− 3
4 gives a O(T− 1

4 ) rate.

PL-result. We here assume that Lmain verifies the PL inequality 1
2∥∇Lmain(θ)∥2 ≥ µLmain(θ), where

we posit minLmain = 0 without loss of generalitiy. The descent lemma gives

ϕt+1
2 ≤ (1− 2ηµ)ϕt2 + 2η

4
3C1.

By unrolling it we obtain

E[Lmain(θT )] ≤ (1− 2ηµ)TLmain(θ0) + (1− (1− 2ηµ)T )
η

1
3C1

µ
.

This shows a linear convergence to a radius proportional to η
1
3 .

B Experimental Details

In this appendix we report the missing details from Section 5.
Training smooth networks. For this experiment we use an MLP with ReLU activations. The

features are of size 728→ 256→ 128→ 10. All the methods are trained with Adam optimizer at learning
rate of 3 × 10−4 for 100 epochs and a cosine learning rate schedule. For consistency with the other
classification experiments we also include 5 epochs of warm-up. The batch size is fixed at 256, and we
take a grid of λ with log10(λ) = −4,−3.5, . . . ,−0.5, 0.

Imagenet training with L2 regularization. For ImageNet training, we employ SGD with a batch
size of 2048, Nesterov momentum of 0.9, and a learning rate of 0.8. This learning rate is derived by
scaling the base rate of 0.1 by a factor of 8, corresponding to the ratio 2048/256. Additionally, we apply

15



1 2
Train Loss

102

103

104

105

L2
 N

or
m

PCGrad
DB
Mixed
Bloop

0.5 0.6 0.7
Test Accuracy

102

103

104

105

L2
 N

or
m

Figure 6: Results of all methods on the imagenet + L2 problem. PCGrad and DB have similar performance
to the mixed method.

Figure 7: Sample images from the Cifar10Mnist dataset.

a cosine learning rate schedule with 5 warm-up epochs and utilize random cropping and flipping for data
augmentation during training. The network is trained for 100 epochs. This configuration is known to
work well for the ResNet50 architecture that we are using here. The grid of λ is 14 uniform values in
log scale between 10−6 and 10−2, and 0. We display results for all methods in Figure 6 with a slightly
smaller grid of λ’s.

Multi-task learning with Cifar10Mnist. The overall setup for this problem is similar to that for
Imagenet training, with the exceptions that we use a smaller architecture—ResNet18 instead of ResNet50,
and a smaller batch size—256 instead of 2048. We also scale down the learning rate to 0.1 to account
for the smaller batch size. The values of the trade-off parameter λ goes from 10−3 to 103 and are split
equally on log scale. Unlike Adam, SGD does not adjust the learning rate scale automatically. This
causes unstable training when λ is too large. We thus futher scale the learning rate 0.1 by 1/(1 + λ) for
each independent run.

Next token prediction. Our model is a byte-level decoder-only transformer. It has 12 layers, 8
attention heads, a residual dimension of 256, and a feed-forward dimension 1024. We use a batch-size of
128 for both datasets, the optimizer is Adam with a learning rate of 0.002. We train the model for 300K
iterations. The grid of λ consists of 16 values evenly spaced in log-space between 10−4 and 10, as well as
0.

Translation. Our model is an encore-decoder transformer. It has 6 encoder and decoder layers, 16
attention heads, a residual dimension of 1024, and a feed-forward dimension 4096. We use a batch-size of
256 for both datasets, the optimizer is Adam with a learning rate of 0.0002. We train the model for 500K
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Figure 8: Results on the Imagenet / Cifar10 experiment. All algorithms perform generally similarly
except for very high values of λ, which leads to worse performance for all algorithms.

iterations. Our implementation is derived from the flax example [Heek et al.]. The grid of λ consists of
16 values evenly spaced in log-space between 10−4 and 10, as well as 0.

C Additional Experiment

We present the results of another experiment, where all methods, including Bloop, gave similar Pareto
fronts. Here, we aim to perform classification on both the Imagenet and the CIFAR-10 datasets. The
network is a ResNet50 with with two separate classification heads. This problem sits in the middle ground
between the multi-task learning and the joint dataset training problem that we describe in Section 5: we
have two separate datasets for the two distinct tasks. Similar to before, the main loss is the training loss
on the larger dataset, i.e., Imagenet, and the auxiliary loss is the training loss on the smaller dataset, i.e.
Cifar10. We choose λ to be equally split on log scale from 10−3 to 10. The remaining configurations
follow the experiment of Imagenet training with L2 regularization, except that we also scale the learning
rate by 1/(1 + λ) to avoid instability as in the multi-task experiment.

The results are shown in Figure 8. Unlike the experiments of Section 5, there is little trade-off between
the two tasks. We can increase accuracy on CIFAR-10 without sacrificing performance on Imagenet. For
this reason, there are only very few points at the Pareto front and all methods perform similarly at these
points. We posit that here, the two losses are not conflicting enough to see the gradient surgery methods
have an edge.
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