Careful with that Scalpel: Improving Gradient Surgery with an EMA

Yu-Guan Hsieh, James Thornton, Eugene Ndiaye, Michal Klein, Marco Cuturi, Pierre Ablin ICML 2024 · Apple

Introduction

Summary

- We revisit mixed optimization (i.e., with main + auxiliary losses) as a simple bilevel problem and propose Bloop, a method closely related to gradient surgery, for solving it.
- 2. We provide **theoretical justification** and **empirical evidence** to support Bloop, using an important variant that relies on **EMA** in the stochastic setting.

Optimization with Two Losses

- Main Loss L_{main} : classification, regression, next-token prediction, denoising ...
- Auxiliary Loss L_{aux} : explicit bias (regularization), different dataset, calibration ...

The regularization approach

$$\theta_{mixed}^{\star}(\lambda) = \operatorname{argmin}_{\theta} L_{mixed}^{\lambda}(\theta) = L_{main}(\theta) + \lambda L_{aux}(\theta)$$

The simple bilevel approach $(\lambda \to 0)$

$$\theta_{bilevel}^{\star} = \operatorname{argmin}_{\theta} L_{aux}(\theta) \ s.t. \ \theta \in \operatorname{argmin} L_{main}(\theta)$$

Preferred when there is a hierarchy between losses

Regularized problems can be hard to optimize

$$\theta = (a, b), \quad L_{main}(\theta) = \frac{1}{2}a^2, L_{aux} = \frac{1}{2}((a-1)^2 + b^2)$$

The Hessian of L_{mixed}^{λ} is $\begin{pmatrix} 1+\lambda & 0 \\ 0 & \lambda \end{pmatrix}$, with conditioning $1+1/\lambda \xrightarrow{\lambda \to 0} \infty$

Pareto Front

Goal: Find methods that better trade-off the two losses We use a hyperparameter λ to control the trade off

Algorithm

Bloop: BiLevel Optimization with Orthogonal Projection

Consider the following direction

$$d = g_{main} + \lambda \pi(g_{aux}, g_{main})$$

$$where \quad \pi(g_{aux}, g_{main}) = g_{aux} - \frac{\langle g_{aux}, g_{main} \rangle}{\|g_{main}\|^2} g_{main}$$

The projection guarantees descent of the main loss function when learning rate is small

$$L_{main}(\theta - \eta d) \simeq L_{main}(\theta) - \eta \parallel g_{main} \parallel^2$$

Theorem [Small Bloop direction iff Near-Stationary point]

- If d is small, there exists vector v such that both $||g_{main}||$ and $\parallel g_{aux} - \nabla^2 L_{main}(\theta) v \parallel$ are small
- For any first-order stationary point θ^* , we have $\lim d(\theta^* + \varepsilon v) = 0$ where v is the Lagrange multiplier

Bloop direction

Extension to the Stochastic Setting

In practice, $\mathbb{E}[d_{main}^{batch}] = d_{main}$ and $\mathbb{E}[d_{aux}^{batch}] = d_{aux}$

The naive solution

$$d_{simple}^{batch} = d_{main}^{batch} + \lambda \pi (g_{aux}^{batch}, g_{main}^{batch})$$

Issue: $\pi(g_{aux}^{batch}, g_{main}^{batch})$ is biased: in expectation collinear

The EMA solution

Theorem [Convergence of average gradient norm]

Fix any time horizon T, by choosing $\eta \simeq T^{-\frac{3}{4}}$ and $ho \simeq \eta^{\frac{2}{3}}$, we have

$$\frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E}[\| \nabla L_{main}(\theta^t) \|^2] = O(T^{-\frac{1}{4}})$$

Experiments

Baselines

Mixed (i.e., SGD on the mixed loss)

$$d = g_{main}^{batch} + \lambda g_{aux}^{batch}$$

2. Dynamic Barrier (DB) [Gong & Liu, 2021]

$$d = \max(1 - \lambda(\langle g_{main}^{batch}, g_{aux}^{batch} \rangle / \parallel g_{main}^{batch} \parallel^2), 0) g_{main}^{batch} + \lambda g_{aux}^{batch}$$

- 3. PCGrad [Yu et al., 2020]: Project only when gradients are in conflict
 - $d = g_{main}^{batch} + \lambda g_{aux}^{batch}$ if $\langle g_{main}^{batch}, g_{aux}^{batch} \rangle > 0$
 - $d = \pi(g_{main}^{batch}, g_{aux}^{batch}) + \lambda \pi(g_{aux}^{batch}, g_{main}^{batch})$ if $\langle g_{main}^{batch}, g_{aux}^{batch} \rangle \leq 0$

Setup

Task	Main Loss / Dataset	Auxiliary Loss / Dataset
Training smooth MLP For MNIST	Classification loss	Logarithm of Lipschitz upper bound of network
Training ResNet18 on CIFAR10MNIST	Classification loss for background CIFAR-10 image	Classification loss for foreground MNIST digit
LM pre-training	30M examples from c4	20k examples from RCV-1
EN-DE translation	36M samples from Paracrawl	10k examples WMT 09 - 19

Results

