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Abstract— In networks of autonomous agents (e.g., fleets of
vehicles, scattered sensors), the problem of minimizing the sum
of the agents’ local functions has received a lot of interest. We
tackle here this distributed optimization problem in the case
of open networks when agents can join and leave the network
at any time. Leveraging recent online optimization techniques,
we propose and analyze the convergence of a decentralized
asynchronous optimization method for open networks.

I. INTRODUCTION

Multi-agent systems are a powerful modeling framework
for the analysis of signal processing or machine learning
over sensor networks, fleets of autonomous vehicles, opi-
nion dynamics, etc. This framework calls for decentralized
optimization methods where the agents seek to minimize the
sum of the individual functions by exchanging information
through a communication graph, without the help of a
central authority. Indeed, such methods are key to perform
distributed computing, signal processing, or learning from
scattered sources in communication-constrained or large-
scale environments; see e.g [1]–[4] and references therein.

In this regard, decentralized optimization methods have
been extensively studied in the literature. Depending on the
agents’ computing abilities and tasks at hand, several types
of algorithms were considered. On the one hand, gradient-
based methods such as decentralized gradient descent [5]–
[7], and decentralized dual averaging [8]–[11] update the
local variables using gradients of the agents’ objective func-
tions (see also [12] for a recent review). On the other hand,
splitting methods such as the alternating direction method of
multipliers (ADMM) [13]–[15] imply that each agents has to
minimize (a regularized version of) its local function, which
can be too demanding depending on the application.

Despite the abundance of literature on this topic, most
of them assume a network of fixed composition, that is, the
agents that participate in the process always remain the same.
On the contrary, this work focuses on the case of an open
network where the agents can join and leave the system at
any moment. This can happen in numerous situations, e.g.,
• When a cluster of servers is used to train a machine

learning task, a node may leave the network due to a
system failure or simply because the resource is acquired
by another job. New nodes can also be deployed to
accelerate the training process or process additional data.
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• We can also think of the case of volunteer computing
where volunteers provide computing resources for a dis-
tributed task. The network is naturally open since a device
is only involved when the volunteer desires to participate.

• In multi-vehicle coordination, the set of vehicles that are
considered by the algorithm can evolve with time.

Due to the dynamic nature of these open multi-agent
systems, several works have studied the stability of consensus
algorithm over the mean, maximum, or median of the agents
values [16]–[20]. Among the very few works that tackle the
problem of decentralized optimization over open networks,
[21] showed that decentralized gradient descent is stable
when agents/functions change over time if their objectives
are sufficiently smooth.

Distributed algorithms also need to cope with asyn-
chronous communications (i.e., the agents do not synchro-
nize to communicate between optimization steps) with delays
(i.e., there may be some gap between sending and receiving
times). Such capacity is an important feature for scalability
and flexibility. The study of this aspect was thus concomitant
to the development of different decentralized optimization
methods; see e.g., [22]–[24].

In this paper, we focus on the particular case of asyn-
chronous open networks where i) the agents can commu-
nicate with each other asynchronously following a time-
varying communication graph; ii) the exchanges and local
processing incur delays; and iii) the agents may join and
leave the system for arbitrary periods of time. While the first
two points are relatively well studied in the literature as men-
tioned above (see also [25] for an online distributed algorithm
with local processing delays), the last point tremendously
complicates the analysis since the system may completely
change from one step to another, see e.g., [26] and references
therein.

To address this challenge, we develop the idea that (offline)
optimization problems over open networks can be efficiently
handled by tools from online optimization. Using this view-
point and building on recent results on dual averaging for
online learning with delays [27], we introduce DAERON
(Dual AvERaging for Open Network), a method for opti-
mization over open networks that allows for asynchronous
communications. On the theoretical side, we study the
algorithm’s performance with respect to the average (over
both time and agents) of the agents’ functions. We then
provide numerical simulations on a decentralized regression
problem to illustrate the potential of our method.

The rest of the paper is organized as follows. In Section II,
we formulate the open multi-agent optimization problem



mathematically and define the corresponding performance
measures. The main algorithm is described in Section III and
analyzed in Section IV. Section V is dedicated to numerical
experiments. Finally, Section VI concludes the paper and
provides several clues for future research.

II. AN OPEN NETWORK OF COMPUTING AGENTS

A. Model

We consider a (possibly infinite) set of agents V; each
of them associated with an individual convex cost function
fi : Rd → R. At each time t = 1, 2, . . . , only a (finite)
subset of agents Vt is active and may communicate using
undirected communications links Et := {{i, j} ∈ V2

t :
i and j can exchange at t}. Let mt := card(Vt) denote the
number of active agents at time t and we will also write
Mt :=

∑t
s=1ms.

In open multi-agent systems, it is in general impossible
to define a temporally invariant global objective to minimize
over time. Since those who are present in the network are
usually the entities that we really care about, an alternative
is to focus exclusively on the active agents and define the
instantaneous loss at time t as

f inst
t (x) =

1

mt

∑
i∈Vt

fi(x).

The problem of interest is then the minimization of f inst
t .

However, providing a proper analysis for this time-varying
problem is still challenging because the set of active agents
Vt may change drastically between two consecutive time
instants, which also leads to an abrupt change in the objec-
tive. In addition, agreeing on a consensus value in an open
network is already a difficult problem [18], [20].

B. Quantity of Interest

Instead of tackling the minimization of f inst
t directly,

we draw inspiration from online learning and analyze the
running loss defined for a time-horizon T as

Loss(T )=
1

MT

(
T∑
t=1

∑
i∈Vt

fi(x
ref
t )−min

u∈X

T∑
t=1

∑
i∈Vt

fi(u)

)
(1)

where X ⊂ Rd is the shared constrained set and xref
t is a

reference point for time t. In the sequel, we will consider
algorithms in which each agent i ∈ Vt produces a local
variable xi,t at time t. It is thus reasonable to set xref

t = xit,t
for a reference agent it ∈ Vt that is chosen arbitrarily at each
time, and Loss would then represent the average network
suboptimality over time for these reference agents. Note that
the suboptimality is compared with the best fixed a posteriori
action which is the solution u? ∈ X of

min
u∈X

{
f run
T (u) :=

1

MT

T∑
t=1

∑
i∈Vt

fi(u)

}
.

This quantity mimics the collective regret in [27] with an
additional 1/MT which takes into account the total number
of agents that have participated until time T . The notable

Algorithm 1 DAERON at node i for active period tjoin-tleave

1: Parameters: tjoin time when the agent joins the network;
tleave time when the agent leaves the network

2: Initialize: Si,tjoin ← Sj,tjoin for j ∈ Vtjoin−1 ∩Vtjoin

3: for t = tjoin, . . . , tleave do
4: Generate the prediction xi,t using (2)
5: Compute the local subgradient gi,t ∈ ∂fi(xi,t)
6: Send subgradients to other active agents
7: Receive subgradients identified by the index set Gi,t
8: Update Si,t+1 ← Si,t ∪Gi,t ∪{gi,t}
9: end for

difference here with the distributed online optimization liter-
ature [28]–[30] is that we consider an open network of agents
so that the composition of the system can change over time.

III. DAERON: DUAL AVERAGING FOR OPEN NETWORK

A. Algorithm

DAERON, as described in Algorithm 1, is a (sub)gradient-
based method that applies dual averaging [31] at the level
of the whole network. For this, we assume that given any
point xi,t ∈ X , the agent i is able to compute a subgradient
gi,t ∈ ∂fi(xi,t). This information is transmitted to the whole
network and used by all the agents for computing their own
variable. Formally, let us define Si,t as the index set of the
subgradients that the agent i ∈ Vt has received/computed by
time t. Then, the agent i generates the variable xi,t as

xi,t = ΠX

x1 − ηi,t ∑
(j,s)∈Si,t

gj,s

 . (2)

where ΠX : y 7→ arg minx∈X ‖x− y‖ denotes the projection
onto X , x1 is a common starting point, and ηi,t > 0 is
a learning rate that can be both time and agent dependent.
Note also that the communication of the subgradients (lines
6-7) can be done asynchronously in parallel with the other
steps (lines 4-5) of the algorithm.

Remark 1 (Arriving agents): In Algorithm 1, we initialize
an agent arriving at time t with the subgradient set of an
arbitrary agent in Vt−1 ∩Vt, which implicitly assumes that
Vt−1 ∩Vt 6= ∅. This is not crucial, as what really counts is
that the agent is initialized with sufficient knowledge about
what the network has computed, but we will stick to this
model in the remainder of the paper for simplicity.

B. Practical Implementation

Storing all the available subgradients at a node can be
prohibitively expensive, or even infeasible since this would
require infinite storage capacity when t goes to infinity. It
is thus important to note that DAERON is just a concep-
tual algorithm that can be implemented in different ways
to circumvent this issue. We provide below two possible
workarounds to demonstrate the flexibility of our method:



• We can maintain yi,t =
∑

(j,s)∈Si,t gj,s while keeping
track of the most recent subgradients in order to com-
municate them with other agents. Formally, suppose that
each node has a number of potential neighbors they may
be connected to; then a subgradient gj,s only needs to be
stored until the time that it has been sent to or received
from these potential neighbors.

• If the number of involved agents m is small, we may
define the sum of the subgradients computed by agent i
as y̌i,t =

∑t−1
s=1 gi,s with the convention gi,s = 0 when

i /∈ Vs. Each node i ∈ Vt then stores a table of size m×d
containing the vectors y̌1,t−τ1,i(t), . . . , y̌m,t−τm,i(t) corre-
sponding to delayed versions of the computed subgradient
sums over the network, with τj,i(t) measuring this delay.
These vectors are updated through communication. This
strategy can also be adopted in a semi-centralized net-
work with m central nodes and an arbitrary number of
edge computing devices that retrieve information from
these central nodes.

C. Quantities at play and assumptions

For our analysis, we make the following technical assump-
tions on the local cost functions and the constraint set.

Assumption 1: Each fi is convex and G-Lipschitz. The
common constraint set X is closed and convex.

In order for the problem to make sense, we will assume
that the communication delays are upper bounded.

Assumption 2: The delays of the algorithm are upper
bounded by τ , i.e., for any t, s ∈ N such that t > s + τ
and any i ∈ Vt, j ∈ Vs, we have (j, s) ∈ Si,t.

In particular, Assumption 2 supposes that every piece of
information is spread to the whole network in a finite amount
of time. While this is quite evident in a static network, in the
case of an open network this requires that the evolution of the
network is slow enough with respect to the communication
between the agents.

For concreteness, let us consider a model where every
node communicates all its available gradients to its neighbors
at each iteration. Then for a static network with a fixed
topology G = (V, E), we have clearly τ = diam(G) where
diam(G) stands for the diameter of the graph. The case of an
open network with changing topology is considerably more
complicated. For instance, in the case of a line graph where
at each time a new agent joins at the end of the graph, the
diameter grows linearly with t and it becomes impossible
to propagate information to the whole network. This is one
kind of situation we want to avoid here. Formally, we define
Vj,st = {i ∈ Vt : (j, s) ∈ Si,t} as the set of active agents
that possess gj,s at time t. The following example provides
a sufficient stability assumption which allows information to
spread across the network.

Example 1 (Bounded delays): Come back to the same sit-
uation as above where every node communicates all its avail-
able gradients to its neighbors during each iteration. Suppose
further that the set of the active agents remain unchanged for
periods of B iterations (i.e., for t = lB, . . . , (l + 1)B − 1),

and that the graph Gl = (Vt,
⋃l(B+1)−1
t=lB Es) is k-vertex-

connected (i.e., removing at least k nodes is necessary to
disconnect it). If the number of arriving plus leaving agents
at the end of iteration (l + 1)B − 1 is q < k, then for
any s ≤ lB − 1 and j ∈ Vs, the number of nodes that
do not possess gj,s is reduced by at least k − q > 0 after
the B iterations, i.e., card(Vj,s(l+1)B) ≤ max(0, card(Vj,slB )−
(k− q)). In that case, the maximal delay is thus bounded by
maxtmtB/(k − q) +B.

The above example means that provided that the number
of exiting/incoming agents is not too large compared to the
connectivity of the communication graph, the delays are
naturally bounded.

Remark 2 (Loss of information due to agent departure):
When an agent leaves the network, some of its computed
subgradients may be lost for the network. This can happen
either because it never communicated them or because the
agents to which it communicated them also left the network.
In Example 1, the change of composition at the end of
iteration (l + 1)B − 1 could notably cause the loss of the
subgradients computed at time t = lB, . . . , (l + 1)B − 1.
This does not affect the proposed algorithm. The only
difference is in the analysis: we will consider that the agent
j is not in Vs if Vj,st = ∅ starting from some t.1

IV. ANALYSIS

A. Performance in the general case

We provide the convergence result for DAERON in terms
of the running loss defined in (1). To do so, we define the
quadratic mean and the average number of active agents over
time:

mQM =

√√√√ 1

T

T∑
t=1

m2
t and m =

1

T

T∑
t=1

mt.

Note that we always have mQM ≥ m.

Theorem 1: Let Assumptions 1 and 2 hold. Running
DAERON with constant learning rate

ηi,t ≡ η =
r0

mQMG
√

(3τ + 1)T

for some r0 > 0 guarantees that

Loss(T ) ≤ mQM

m

2αrG
√

3τ + 1√
T

, (3)

where r = ‖u? − x1‖2 and α = max(r/(2r0), r0/r).
Proof: An important feature of DAERON is that the

subgradients are not always applied to the points where
they are evaluated. To accommodate this in our analysis, we
consider the virtual iterates (x̃t)t∈N defined by

x̃t = ΠX

(
x1 − η

t−1∑
t=1

∑
i∈Vt

gi,t

)
.

1Note that in Example 1, we have either Vj,s
t = ∅ or Vj,s

t = Vt for t
sufficiently large (assuming that s is fixed).



From the regret analysis of dual averaging (see, e.g., [32,
Prop. 2]), the following holds for all u ∈ X ,∑
t=1

∑
i∈Vt

〈gi,t, x̃t − u〉 ≤
‖u− x1‖2

2η
+
η

2

T∑
t=1

∥∥∥∥∑
i∈Vt

gi,t

∥∥∥∥2

≤ ‖u− x1‖
2

2η
+
η

2

T∑
t=1

m2
tG

2.

In the second line we have used the Lipschitz continuity of
the functions which implies that ‖gi,t‖ ≤ G. Next, by using
the convexity and the Lipschitz continuity of the functions,
each term of (1) can be bounded for any u ∈ X by

fi(x
ref
t )− fi(u) = fi(xit,t)− fi(xi,t) + fi(xi,t)− fi(u)

≤ G‖xit,t − xi,t‖+ 〈gi,t, xi,t − u〉.

We proceed to bound the second term in the above inequality

〈gi,t, xi,t − u〉 = 〈gi,t, xi,t − x̃t〉+ 〈gi,t, x̃t − u〉
≤ G‖xi,t − x̃t‖+ 〈gi,t, x̃t − u〉.

Using the triangle inequality, we get ‖xit,t−xi,t‖ ≤ ‖xit,t−
x̃t‖ + ‖xi,t − x̃t‖. Now, let Γt = maxi∈Vt‖xi,t − x̃t‖ and
set u← u?. We have from the above

Loss(T ) ≤ 1

Mt

(
‖u? − x1‖2

2η
+

T∑
t=1

(
η

2
m2
tG

2 + 3mtGΓt)

)
.

To conclude, we may bound Γt thanks to the bounded
delay assumption. In fact, since the projection operator is
non-expansive, it holds for all i ∈ Vt that

‖xi,t − x̃t‖ ≤
∥∥∥∥η t−1∑

t=1

∑
j∈Vt

gi,t − η
∑

(j,s)∈Si,t

gj,s

∥∥∥∥
≤
∥∥∥∥η t−1∑

s=t−τ

∑
j∈Vs

gj,s

∥∥∥∥ ≤ η t−1∑
s=t−τ

msG.
2

Then, with mtms ≤ (m2
t +m2

s)/2, we obtain the following

Loss(T ) ≤ 1

Mt

(
‖u? − x1‖2

2η
+ ηG2

T∑
t=1

(3τ + 1)m2
t

)
.

Inequality (3) follows immediately by the definition of mQM,
m, and α.

Theorem 1 shows that when the ratio mQM/m is upper
bounded, the running loss of the algorithm has a convergence
rate in O(1/

√
T ). The factor mQM/m also indicates that the

algorithm converges slower when the number of active agents
varies greatly across iterations, which is expected because the
algorithm would need more time to accommodate the change
in this situation.

Remark 3 (Extensions): One drawback of the theorem is
that the expression of the learning rate involves both the
sqaure mean number of the agents mQM and the time horizon
T . In a continuously evolving network, neither of these two
quantities are known in advance. We provide below several
alternatives which allow us to establish the same O(1/

√
T )

2If s ≤ 0, then Vs = ∅ and mt = 0.

rate without these quantities. Proofs are variations of the
above proof; we omit details due to space limitations.

• If the number mt is known to every agent. We may use

ηi,t = ηt = Θ(1/
√
τ(
∑t
s=1m

2
s)).

• If mmax = max1≤t≤T mt can be estimated and the
agents have access to a global clock that indicates t, we
can take ηi,t = ηt = Θ(1/(mmax

√
τt)).

• Note that
√∑t

s=1m
2
s ≤

√
mmax

√
Mt. Therefore, pro-

vided that mmax is known, another alternative is to
use ηi,t = Θ(1/

√
τmmaxMt). This does not require

to know mt explicitly since Mt can be estimated by
card(Si,t). In particular, under Assumption 2, it holds
Mt ≤ card(Si,t) + (τ + 1)mmax.

B. The case of fixed agents Vt = V

For comparison with existing literature (e.g., [8]), we now
turn back to the case of a “closed network” where all the
agents are active at each iteration. In this situation, we can
define the (fixed) global loss as

f(x) =
1

m

∑
i∈V

fi(x),

where m = card(V) is the number of agents. We have
mQM = m = m and thus mQM/m = 1. As an immediate
corollary of Theorem 1, if we apply DAERON with the
constant stepsize

ηi,t ≡ η =
r

mG
√

(3τ + 1)T
,

then for any agent i ∈ V ,

f

(
1

T

T∑
t=1

xi,t

)
−min
u∈X

f(u) ≤ 1

T

T∑
t=1

f(xi,t)−min
u∈X

f(u)

≤ 2rG
√

3τ + 1√
T

.

This means that the running average of each agent’s iterates
decreases in global suboptimality at rate O(1/

√
T ), which

matches the rate of [8, Th. 2] for the slightly different
decentralized dual averaging algorithm.3 Going one step
further, the same result would still hold under asynchronous
activation as long as the activation patterns can be described
by a stationary probability distribution. On the other hand,
Theorem 1 also allows us to prove the convergence of
the algorithm in an open network whose composition stops
changing after finite time.

V. NUMERICAL EXPERIMENTS

In this section, we demonstrate the effectiveness of
DAERON with experiments on a static and an open network.

3In [8], the subgradient are averaged by gossiping while in DAERON,
they are directly exchanged.



A. Problem Description

Let us consider a decentralized least absolute deviation
(LAD) regression model. Given a data set evenly distributed
on m nodes (aik, bik)i,k∈[m]×[n] with aik in Rd and bik ∈ R,
it consists in solving

min
x∈Rd

{
f(x) :=

1

m

m∑
i=1

1

n

n∑
k=1

|a>ikx− bik|

}
. (4)

Compared to least square regression, LAD is known to be
more resistant to the presence of outliers. Although the
use of absolute value makes the problem non-differentiable,
DAERON can be run with subgradients as suggested by our
analysis. For the experiments, we generate synthetic data as
follows:

1) The ground truth model x? ∈ [−5, 5]d is drawn from a
uniform distribution.

2) The local model x?i of the node i is obtained by
perturbing x? with a Gaussian noise, i.e., x?i = x? + εi
where εi ∼ N (0, Id).

3) We sample aik ∼ N (0, Id) and compute bik = a>ikx
?
i +

εik with εik ∼ N (0, 1).
4) On each node, a random portion of samples are cor-

rupted. For these samples, we replace bik by a random
value generated from a Gaussian distribution.

In the above, we introduce the second and the fourth steps
mainly for two reasons. First, it makes the problem more
heterogeneous, and thus more difficult. Second, it makes the
communication between agents more important for finding
a good approximation of x?. In the following, we will take
m = 64 nodes, n = 200 samples per node, and dimension
d = 20. On each node, the number of corrupted samples is
random in {0, . . . , 120}. We also verify that the solution x̂
of (4) is not too far from x?.

B. Static network

We first investigate the performance of the algorithm on a
static network. The nodes are arranged in a 2d grid of size
8 × 8. Adjacent nodes exchange gradients at each iteration.
Communication-computation overlap is allowed for better
efficiency— in Algorithm 1, this means that lines 4-5 and
6-7 are run in parallel. Then, with a constant stepsize η, the
update writes

xi,t+1 = xi,t − η
m∑
i=1

gj,t−τj,i ,

where τj,i is the distance between the nodes j and i. For
illustration purposes, we also compare with a decentralized
(sub)gradient descent (DGD) method [5] with constant step-
size γ and a mixing matrix W = (wi,j). Its update is

xi,t+1 =

m∑
j=1

wi,jxj,t − γgi,t

Algorithm 2 DAERON at each node i as implemented in
Section V-C

1: Initialize: Si,1 ← ∅, activation status ζi ∈ {0, 1},
network parameters K ∈ N, p ∈ [0, 1]

2: for t = 1, 2, . . . do
3: Agent update
4: if ζi = 1 then
5: Get randomly paired with another active agent j
6: Compute xi,t by (2) and gi,t ∈ ∂fi(xi,t)
7: Update Si,t+1 ← Si,t ∪Sj,t ∪{gi,t}
8: end if
9: Network evolution

10: if (t+ 1) ≡ 0 mod K then
11: Draw a Bernoulli random variable zi ∼ B(p)
12: ζi ← ζi + zi mod 2
13: if zi = 1 and ζi = 1 then
14: Pick randomly j ∈ Vt ∩Vt+1

15: Update Si,t+1 ← Sj,t+1

16: end if
17: end if
18: end for

and we take W as the Metropolis matrix of the graph in our
experiments:

wi,j =

 1/(max(deg(i),deg(j)) + 1) if {i, j} ∈ E ,
1−

∑m
k=1 wi,k if i = j,

0 otherwise,

with deg(i) denoting the degree of the node i.
For a proper comparison of the two algorithms, it is

important to notice that a subgradient is sent to all the
m nodes in DAERON while it is averaged out in DGD.
Therefore, we will take γ = mη and refer to it as the
effective learning rate of both methods. With this in mind, in
Fig. 1a we plot the convergence of the averaged optimality
gap (1/m)

∑m
i=1 f(xi,t) − min f for DAERON and DGD

with different choices of γ.
Interestingly, we observe that when using the same ef-

fective learning rate, the two algorithms establish similar
convergence behavior until reaching their respective fixed
points. However, DAERON is able to converge to a point
with higher accuracy. We believe that this is because the vari-
ables (xi,t)i∈V tend to be closer to each other in DAERON.4

C. Open network

Now that we have shown that DAERON performs com-
parably to standard decentralized optimization methods in
a static network, we proceed to study its behavior in an
open multi-agent system (Algorithm 2). Following [33], we
model the arrivals and departures of the agents by a Bernoulli

4Indeed, let ∆ and 1−λ be respectively the diameter of the graph and the
spectral gap of the mixing matrix. Then, as shown in the proof of Theorem 1,
for DAERON we can roughly bound ‖xi,t − xj,t‖ by mητG = ∆γG.
As for DGD, it is known that we have asymptotically ‖xi,t − xj,t‖ .
γG/(1 − λ) [12, Lem. 11]. Since it generally holds ∆ ≤ 1/(1 − λ)
and this is notably the case for the graph that we consider, this provides a
possible explanation for the superiority of DAERON over DGD.
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Fig. 1: Comparison of DAERON and DGD. For a static
network we plot in (a) the averaged suboptimality. For an
open network we plot in (b) the averaged instantaneous
suboptimality (5) and the averaged running loss (6).

process. Initially, only half of the 64 nodes are active. Then,
every K = 20 iterations, each agent may change its activa-
tion status (i.e., from active to inactive or vice-versa) with
probability p = 0.05. At each iteration, the active nodes are
randomly paired with each other, then each pair synchronizes
their gradients.5 Formally, if nodes i and j are paired at time
t, then Si,t+1 \ {gi,t} = Sj,t+1 \ {gj,t} = Si,t ∪Sj,t. In
the spirit of DGD, we also implement an algorithm which
directly updates the primal variables as

xi,t+1 =
xi,t + xj,t

2
− γgi,t,

xj,t+1 =
xi,t + xj,t

2
− γgj,t.

In both cases, an agent that becomes active at the end of
round t − 1 is assigned the state variable (i.e., Si,t or xi,t)
of a random node in Vt−1 ∩Vt. We take γ = mη/2 in our
experiment since on average m/2 nodes are active.

As for the performance measure, we consider the aver-
aged instantaneous optimality gap ¯̀inst(t) and the averaged
running loss ¯̀run(t) defined by

¯̀inst(t) =
1

mt

∑
i∈Vt

f inst
t (xi,t)−min f inst

t (5)

¯̀run(t) =
1

Mt

t∑
s=1

∑
i∈Vs

f inst
s (xi,s)−min f run

t . (6)

The evolution of these two measures for γ = 0.005 are
plotted in Fig. 1b.6 We see that both algorithms are able
to converge to an area where potential solutions are located
whereas DAERON can get much closer to the optimum
of f inst

t . Moreover, we observe that the instantaneous loss
for DAERON increases abruptly when the set of active
agents changes and gets decreased again afterwards. This
indicates that the algorithm actually has the ability to track
the instantaneous solution.

5If there is an odd number of nodes, one node is ignored in this process.
6This is roughly the largest stepsize that leads to the decrease of the

losses. We observe similar convergence patterns for smaller stepsizes, while
the performance gap between the two algorithm diminishes.

VI. CONCLUSION

In this paper, we introduced a decentralized optimization
method for open multi-agent systems, in which agents can
freely join or leave the network during the process. This
setting is particularly challenging since there is not a clear
objective to minimize and even exact convergence to a
consensus is generally out of reach. These difficulties led
us to adopting techniques and performance measures from
online optimization. We proved that our algorithm benefits
from a O(1/

√
T ) convergence rate with respect to the

running average of the functions of the agents present in
the network. In our simulations, we showed that our method
outperformed decentralized subgradient descent on a least
absolute deviation problem.

The positive results in our numerical experiments also
opens up several new research directions: To analyze the
tracking behavior, it could be more relevant to focus on
the dynamic regret [29], [34] or to adopt the perspective
of time-varying optimization [35], [36]. The goal here is
either to bound the sum of the instantaneous optimality gaps
or to show that the realized actions is always close to the
current optimum. Another promising direction is to explore
the potential combination of DAERON and consensus-based
methods, which may lead to superior performance. Given the
variety of problems and open networks that we are facing,
it is clear that there is not a single method that would
outperform all the others. It is thus also important to find
the most suitable algorithm for each specific setup.
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[7] D. Jakovetić, J. Xavier, and J. M. Moura, “Fast distributed gradient
methods,” IEEE Transactions on Automatic Control, vol. 59, no. 5,
pp. 1131–1146, 2014.

[8] J. C. Duchi, A. Agarwal, and M. J. Wainwright, “Dual averaging for
distributed optimization: Convergence analysis and network scaling,”
IEEE Transactions on Automatic control, vol. 57, no. 3, pp. 592–606,
2011.

[9] K. I. Tsianos, S. Lawlor, and M. G. Rabbat, “Push-sum distributed dual
averaging for convex optimization,” in 2012 ieee 51st ieee conference
on decision and control (cdc). IEEE, 2012, pp. 5453–5458.
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