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Background: Saddle-point optimization

Saddle-point problem

Find x⋆ = (θ⋆, φ⋆) such that

L(θ⋆, φ) ≤ L(θ⋆, φ⋆) ≤ L(θ, φ⋆) for all θ ∈ Rd1 and all φ ∈ Rd2 .

L ∶ Rd1 ×Rd2 → R is a differentiable function.

● Arising from: ● GANs ● adversarial training ● robust optimization ● self-play in RL . . .
Caveat: saddle-point problem versus minimax optimization

● Associated vector field: V (θ, φ) = (∇θ L(θ, φ),−∇φL(θ, φ))
First order optimality condition: V (x⋆) = 0
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Background: Saddle-point optimization

The failure of gradient descent/ascent in bilinear games

Gradient descent/ascent

θt+1 = θt − γt∇θ L(θt, φt)
φt+1 = φt + γt∇φL(θt, φt)

Equivalently, Xt+1 =Xt − γtV (Xt).

Algorithm

min
θ∈R

max
φ∈R

θφ; V (θ, φ) = (φ,−θ)
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Background: Saddle-point optimization

Remedy: Extragradient [Korpelevich 1976]

Extra-gradient

Xt+ 1
2
=Xt − γtV (Xt) (leading state)

Xt+1 =Xt − γtV (Xt+ 1
2
) (base state)

Algorithm

min
θ∈R

max
φ∈R

θφ; V (θ, φ) = (φ,−θ)
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Literature review: Convergence of extragradient

Extragradient in the deterministic setting

Blanket assumption: V is β-Lipschitz continuous

Deterministic Additional Hypothesis Convergence type Rate

Korpelevich 1976 Monotone Last iterate -

Tseng 1995 Monotone + Error bound Last iterate Geometric

Nemirovski 2004 Monotone Ergodic O(1/t)

Extensive literature: ● Different convergence metrics and assumptions ● Adaptive and
universal methods ● Dealing with non-smoothness ● More efficient variants . . .
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Literature review: Convergence of extragradient

Extragradient in the stochastic setting

Stochastic oracle (s ∈ N/2)

V̂s = V (Xs) +Zs (i) E[Zs ∣Fs] = 0 (ii) E[∥Zs∥2 ∣Fs] ≤ σ2

V is β-Lipschitz continuous

Stochastic Additional Hypothesis Convergence type rate

Juditsky et al. 2011 Monotone Ergodic O(1/
√
t)

Kannan and Shanbhag 2019 Strongly monotone Last iterate O(1/t)
Mertikopoulos et al. 2019 Strictly coherent Last iterate -
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Literature review: Convergence of extragradient

Last-iterate convergence for stochastic monotone operators?

min
θ∈R

max
φ∈R

θφ; V̂t = (φt + ξt,−θt)

E[ξt] = 0, E[ξ2t ] = σ2 > 0.

Non-convergence: Solutions?
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Candidate solutions:
● Regularization with vanishing weight

● Variance reduction with increasing batch size
● Finite sum: SVRG-like variance reduction
● Second-order: stochastic Hamiltonian descent
● Different stepsizes for the two steps of EG!
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Contributions: Explore aggressively, update conservatively

Our proposal: Double stepsize extragradient

Xt+ 1
2
= Xt − γtV̂t ÐÐ� Xt+ 1

2
= Xt − γtV̂t

Xt+1 = Xt − γtV̂t+ 1
2

Xt+1 = Xt − ηtV̂t+ 1
2

● Explore aggressively, update conservatively: ηt ≤ γt (frequently ηt/γt → 0)

● Stochastic oracle V̂s = V (Xs) +Zs
(i) E[Zs ∣Fs] = 0

(ii) E[∥Zs∥2 ∣Fs] ≤ (σ + κ∥Xs − x⋆∥)2,∀x⋆ ∈ X ⋆

(ii′) V̂s = V̂ (ξ,Xs); V̂ (ξ, ⋅) is (κ /2)-Lipschitz; V̂ has bounded variance on X ⋆
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Contributions: Explore aggressively, update conservatively

Descent inequality and assumptions

Descent Lemma (κ = 0)

E[∥Xt+1 − x⋆∥2 ∣Ft] ≤ ∥Xt − x⋆∥2 − 2ηtEt[⟨V (Xt+ 1
2
),Xt+ 1

2
− x⋆⟩]

− (γtηt − γ3t ηtβ2)∥V (Xt)∥2 + (2γ2t ηtβ + γ3t ηtβ2 + η2t )σ2.

1 Variational stability: ⟨V (x), x − x⋆⟩ ≥ 0 for all x ∈ Rd, x⋆ ∈ X ⋆.
Bilinear ⊂ Convex-concave ⊂ Monotone ⊂ Pseudo-monotone ⊂ Variationally stable

2 Error bound: For some τ > 0 and all x ∈ Rd, we have ∥V (x)∥ ≥ τ dist(x,X ⋆).
e.g., Affine, strongly monotone operators...

ηt < γt
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Contributions: Explore aggressively, update conservatively

Convergence results

Theorem [Main result]

1 Let V be variationally stable. Assume that ∑
t

γtηt =∞, ∑
t

η2t <∞, ∑
t

γ2t ηt <∞,

γt ≤ c/β with c < 1. Then (Xt)t∈N converges to a point x⋆ ∈ X ⋆ almost surely.

2 Let V be monotone and affine. With stepsizes γt ≡ γ and ηt = Θ(1/t),

E[dist(Xt,X ⋆)2] = O (1/t)

3 Let V be variationally stable and satisfy the error bound condition. With stepsizes of
the form γt = γ/(t + b)1/3 and ηt = η/(t + b)2/3,

E[dist(Xt,X ⋆)2] = O (1/ 3
√
t)
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γt ≤ c/β with c < 1. Then (Xt)t∈N converges to a point x⋆ ∈ X ⋆ almost surely.

2 Let V be monotone and affine. With stepsizes γt ≡ γ and ηt = Θ(1/t),

E[dist(Xt,X ⋆)2] = O (1/t)

3 Let V be variationally stable and satisfy the error bound condition. Further suppose that
the noise vanishes on the solution set (i.e., σ = 0). With suitable constant stepsizes,

E[dist(Xt,X ⋆)2] = O (e−ρt)
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Contributions: Explore aggressively, update conservatively

Convergence results

γt = ηt Does not converge in bilinear game

∑
t

γtηt =∞, ∑
t

η2t <∞, ∑
t

γ2t ηt <∞ a.s. convergence for monotone/VS operators

γt = ηt = γ/(t + b) O(1/t) for strongly monotone operators

γt = γ/(t + b)1/3, ηt = η/(t + b)2/3 O(1/ 3
√
t) under error bound condition + VS

γt ≡ γ, ηt = η/(t + b) O(1/t) for affine and monotone operators
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Contributions: Explore aggressively, update conservatively

Beyond monotonicity: Local convergence

Theorem

Assumptions:
(i) Locally variational stable and locally Lipschitz around a soultion x⋆.
(ii) V is differentiable at x⋆ and JacV (x⋆) is invertible.

Guarantee:
For any tolerance level δ > 0, there exists a stepsize policy for double stepsize extra-gradient
such that if the algorithm is initialized close enough to x⋆, there exists an event with
probability at least 1 − δ and, conditioned on this event:
● Under (i), the iterates converge to x⋆.
● Under (i) and (ii), Xt converges to x⋆ at a rate O (1/ 3

√
t) in mean square error.
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Contributions: Explore aggressively, update conservatively

Proof sketch

● Stability of the algorithm
Control the probability of escaping from the neighborhood at each step: thanks to the
use of the specific stepsize policy, we prove the summability of these probabilities and
that this sum can be made arbitrarily small.

● Conditional convergence rate
Caveat. The unbiasedness is not maintained after conditioning.
Solution. Work directly with the indicator function of the
probability event. Precisely, we prove recurrent bounds for
E[∥Xt − x⋆∥2 1Et−1 ∣Ft−1].
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Numerical illustrations
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(a) Bilinear zero-sum game
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(b) Linear quadratic gaussian GAN

Xt+ 1
2
=Xt − γtV̂t [γt = γ/(t + b)rγ ] Xt+1 =Xt − ηtV̂t+ 1

2
[ηt = η/(t + b)rη ]
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Conclusion

● We propose a simple modification of the stochastic extragradient scheme to
make its last iterate converge in a large spectrum of problems including all
monotone games.

● Explicit convergence rate under additional assumptions and local convergence
results are derived.

Thanks for your attention!
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