Thompson Sampling with Diffusion Generative Prior

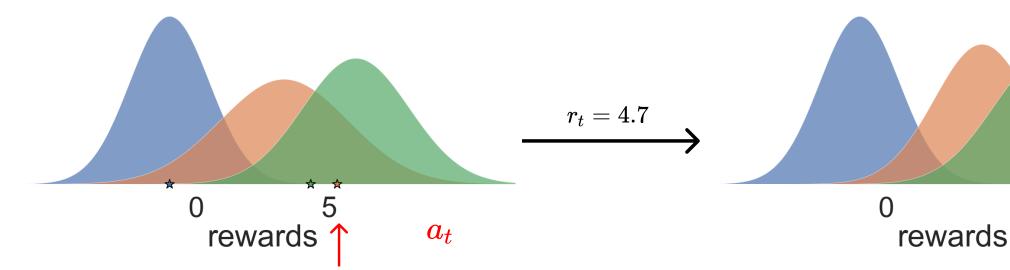
Yu-Guan Hsieh¹, Shiva Kasiviswanathan², Branislav Kveton², Patrick Blöbaum² (¹Université Grenoble Alpes ²AWS Al Labs)

Multi-Armed Bandits

- A model for online decision making
- Learner pulls arm $a_t \in \mathcal{A} = \{1, \dots, K\}$ at round t
- Learner receives rewards r_t drawn from the arm's distribution
- The goal is to maximize the cumulative rewards $\sum_t r_t$

Thompson Sampling

- Given a prior $p(\mu)$ over mean reward vector μ and $\mathcal{H}_t = (a_s, r_s)_{s \in \{1, \dots, t\}}$ is the interaction history
- Maintain posterior distribution $p(\mu | \mathcal{H}_t) \propto p(\mathcal{H}_t | \mu) p(\mu)$
- Sample $\tilde{\mu}_t$ from the posterior and pull $a_t \in \arg \max_{a \in \mathcal{A}} \tilde{\mu}_t^a$



Meta-Learning For Bandits

Different bandit instances can have similar patterns

- Recommend items to different customers
- Assign price to different items using an online pricing algorithm

Diffusion Models

- Noise is gradually added in the forward diffusion process that goes from x_0 to x_L so that $q(X_{\ell+1} | x_\ell)$ is gaussian
- The model learns a reverse process

$$p_{\theta}(X_{\ell} | x_{\ell+1}) = q(X_{\ell} | x_{\ell+1}, X_0 = h_{\theta}(x_{\ell+1}, \ell + \ell)$$

where h_{θ} is the trained denoiser that predicts x_0

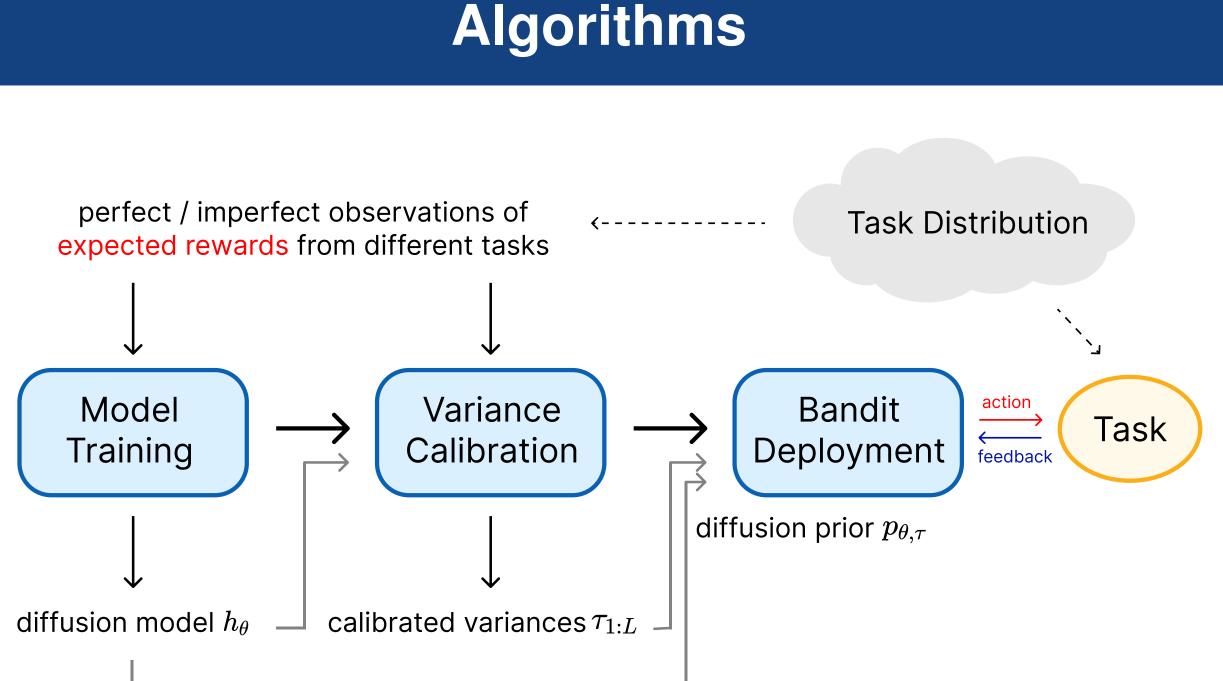
• The iterative process allows easy manipulation of the learned distribution for downstream tasks

Fixed Forward Diffusion Process



TL;DR

We (i) propose Thompson sampling with a diffusion prior, (ii) show how to estimate the prior from imperfect historical data, and (iii) validate our approach experimentally.



Thompson Sampling with Diffusion Prior

Goal: Sample $\tilde{\mu}_t$ from $X_0 | \mathcal{H}_{t-1}$

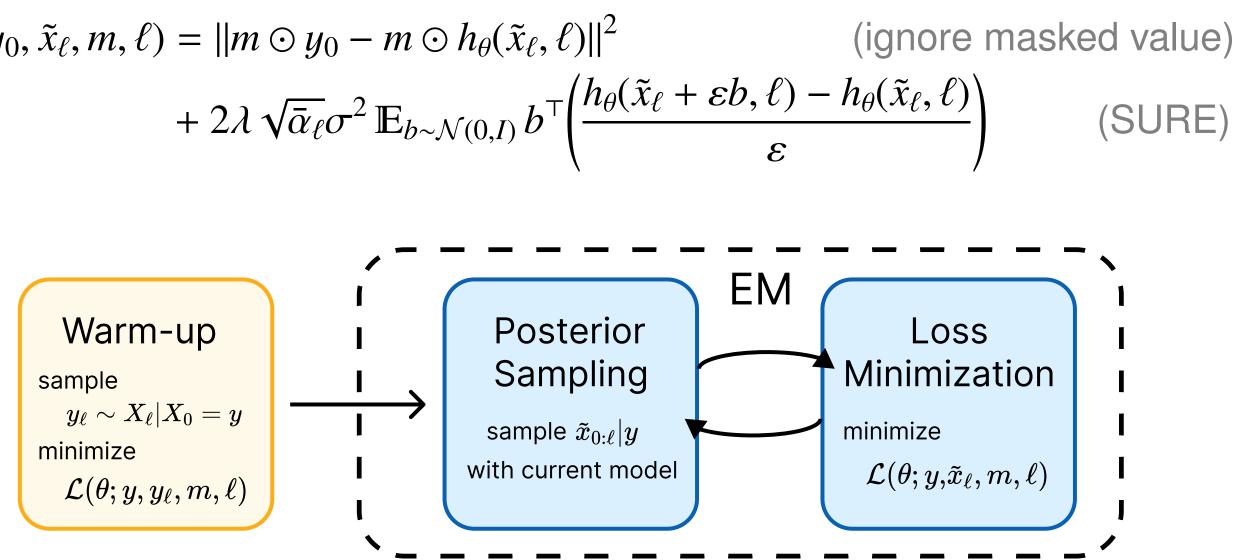
 $\sim \mathcal{N}(0, I_d)$ • Summarize \mathcal{H}_{t-1} with the empirical mean $\hat{\mu}_{t-1}^a$ and the standard error vector σ_{t-1}^a

- Initialize: Sample $\hat{x}_L \sim \mathcal{N}(0, I)$
- Repeat: sample $x'_{\ell} \sim p_{\theta,\tau}(X_{\ell} | x_{\ell+1})$ with the diffusion model If *a* has been pulled, compute \tilde{y}_{ℓ}^{a} from $y^{a} = \hat{\mu}_{t-1}^{a}$ through forward diffusion with noise predicted at $x_{\ell+1}$, and mix x'^a_{ℓ} and \tilde{y}^a_{ℓ}

Diffusion Model Training from Imperfect Data

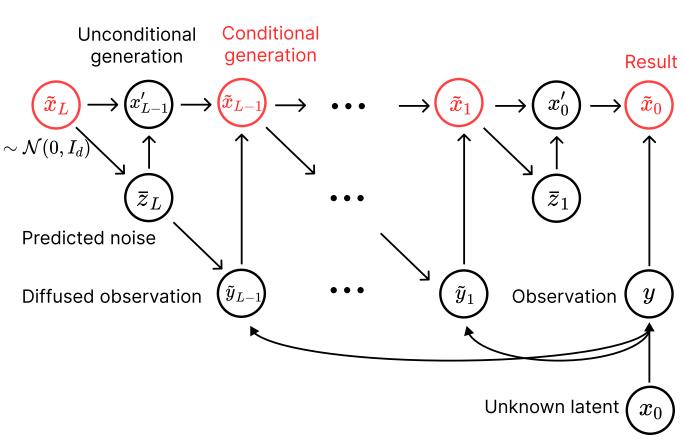
Data are incomplete and noisy $y_0 = m \odot (x_0 + z)$, where *m* is a binary mask and z is noise. We use an EM-like procedure and minimize

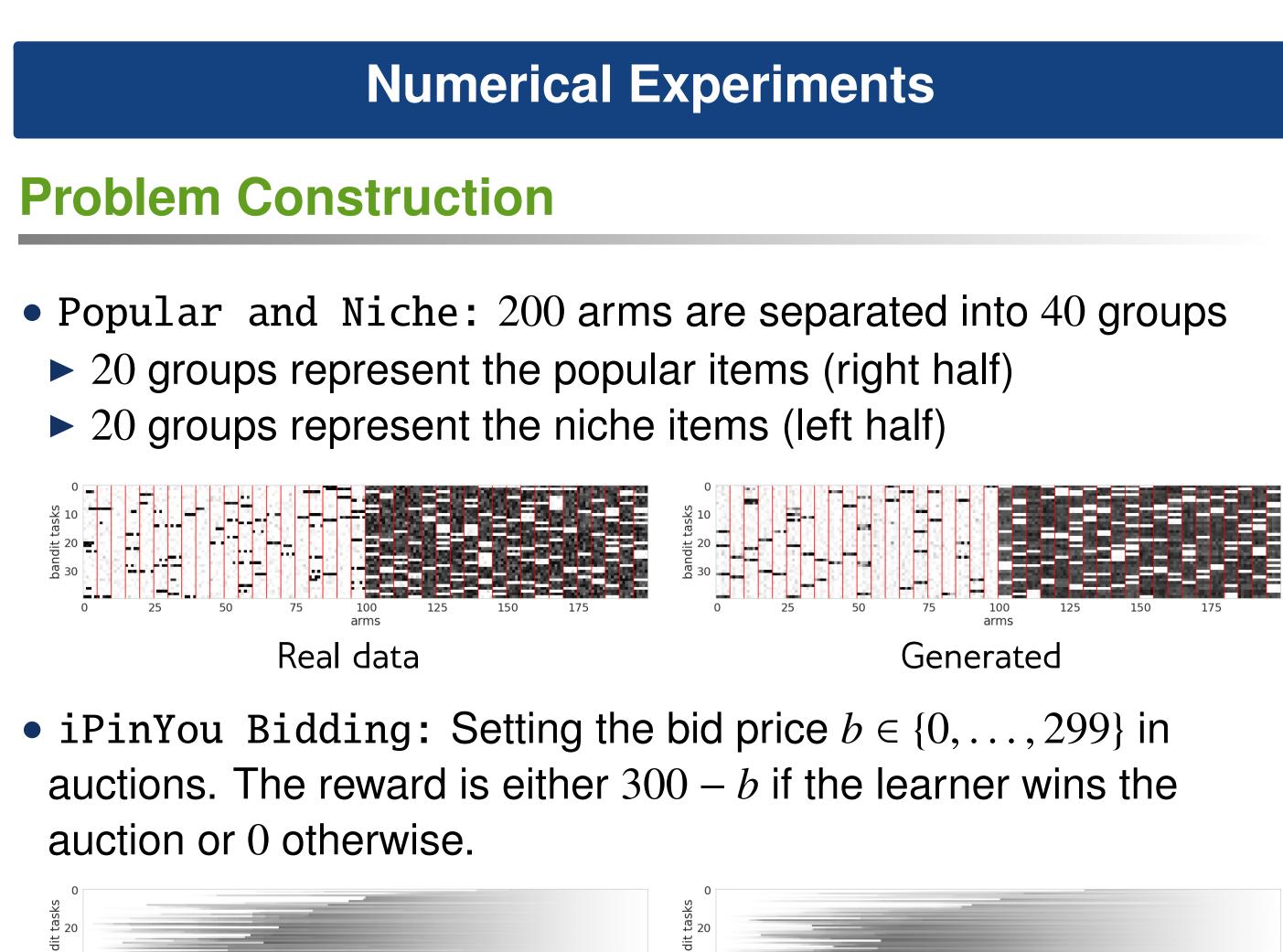
$$\mathcal{L}(\theta; y_0, \tilde{x}_{\ell}, m, \ell) = \|m \odot y_0 - m \odot h_{\theta}(\tilde{x}_{\ell}, \ell)\|^2 + 2\lambda \sqrt{\bar{\alpha}_{\ell}} \sigma^2 \mathbb{E}_{b \sim \mathcal{N}(0, I)} b^{\mathsf{T}} \Big(\frac{h_{\theta}(\tilde{x}_{\ell}, \ell)}{2} \Big)$$



- 1))

Noise $x_L \sim \mathcal{N}(0,I)$



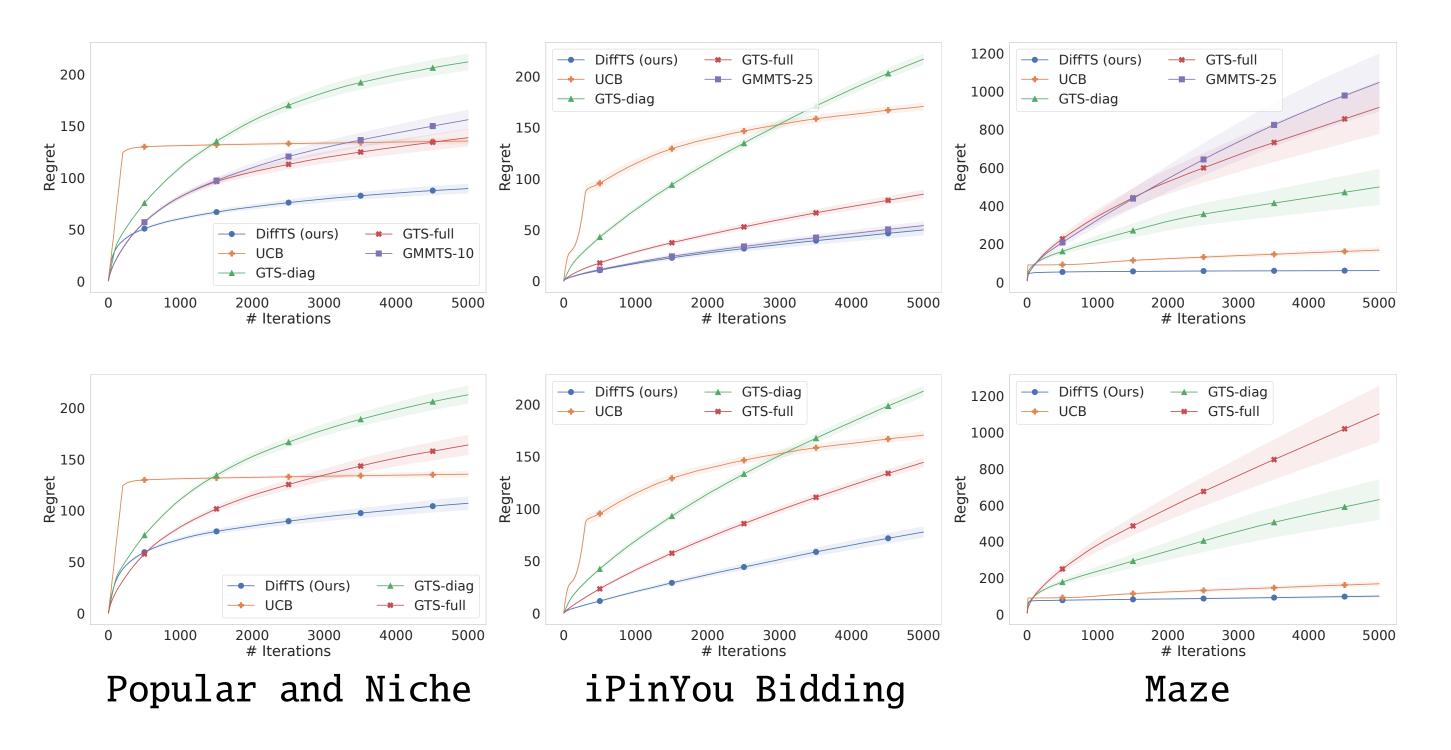


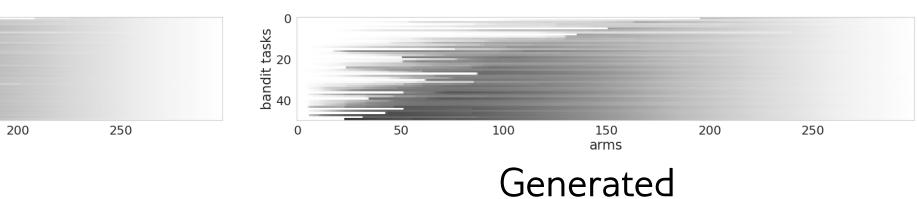
2D maze.

Real data

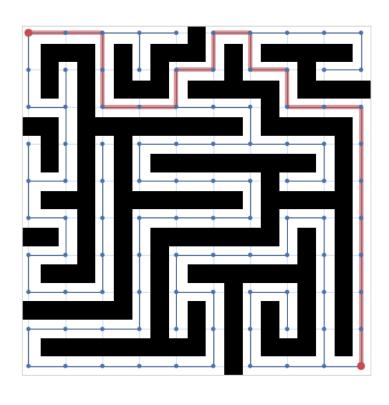
Results

- 5000/1200/5000 and 1000/100/1000
- and 0.1 noise standard deviation in data





• Maze: Online shortest path routing on grid graphs as reward maximization semi-bandit. The edges' mean rewards are derived from a



• Regret is the difference of cumulative rewards between an algorithm and the one that consistently chooses the best action • Training from clean data (top): training and validation set size of

• Training from imperfect data (bottom): 50% feature dropping rate