Diffusion Prior for Online Decision Making A Case Study of Thompson Sampling

Yu-Guan Hsieh

Supervisor: Shiva Kasiviswanathan Mentor: Patrick Bloebaum Also working with: Branislav Kveton

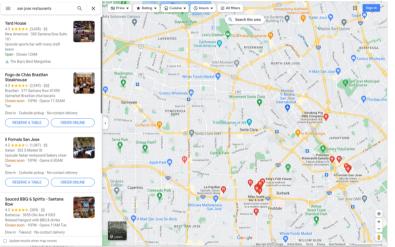
Internship from 08.01.2022 to 11.25.2022 in AWS causality team

Uncertainty in Online Decision Making

Yu-Guan Hsieh

Thompson Sampling with Diffusion Prior

Prior Knowledge in Decision Making



Explore online decision making with prior described by deep generative model

• Online decision making: multi-armed bandits with Thompson sampling

- Online decision making: multi-armed bandits with Thompson sampling
- Deep generative prior: denoising diffusion models

- Online decision making: multi-armed bandits with Thompson sampling
- Deep generative prior: denoising diffusion models
- Contributions
 - Design a Thompson sampling algorithm that runs with a given diffusion model
 - Design a training procedure to learn a diffusion model from imperfect data

- Online decision making: multi-armed bandits with Thompson sampling
- Deep generative prior: denoising diffusion models
- Contributions
 - Design a Thompson sampling algorithm that runs with a given diffusion model
 - Design a training procedure to learn a diffusion model from imperfect data
- Benefit: a good prior grants better performance with limited data

Plan

1 Multi-Armed Bandits and Meta-Learning

2 Denoising Diffusion / Score-Based Models

3 Algorithms

4 Numerical Experiments

5 Conclusion and Perspectives

Multi-Armed Bandits

- Learner pulls arm $a_t \in \mathcal{A} = \{1, \dots, K\}$ at round t
- Learner receives rewards r_t drawn from the arm's distribution
- The goal is to maximize the cumulative rewards $\sum r_t$
- Applications: recommendation systems, online advertisement, clinical trial, ...

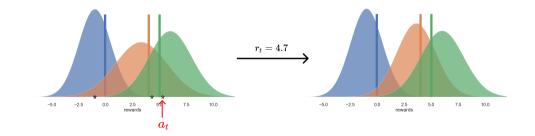
- A Bayesian approach to tackle multi-armed bandits
- The decision is random
- Has often better empirical performance than UCB (frequentist and deterministic)

- A Bayesian approach to tackle multi-armed bandits
- The decision is random
- Has often better empirical performance than UCB (frequentist and deterministic)
- Precisely, for the parameter of interest w it maintains posterior distribution

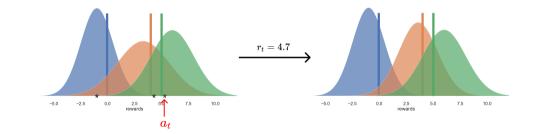
 $p(w \,|\, \mathcal{H}) \propto p(\mathcal{H} \,|\, w) p(w)$

where p(w) is a prior over w and $\mathcal{H} = (a_s, r_s)_{s \in \{1,...,t\}}$ is the interaction history

- In vanilla MAB with with known noise distribution, the parameter of interest is the vector of expected reward $\mu = (\mu^a)_{a \in A}$
- At each round, we sample $\tilde{\mu}$ from the posterior distribution $\mathbb{P}(\mu | \mathcal{H})$ and pull the arm with the highest mean $a \in \underset{a \in \mathcal{A}}{\operatorname{arg max}} \tilde{\mu}^a$

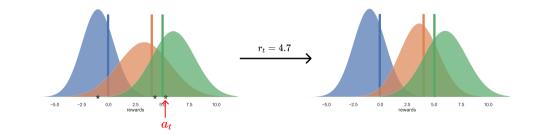


• The algorithm is sensitive to the choice of prior



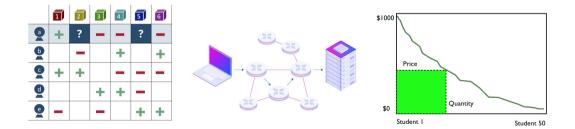
• The algorithm is sensitive to the choice of prior

Can we learn the prior?

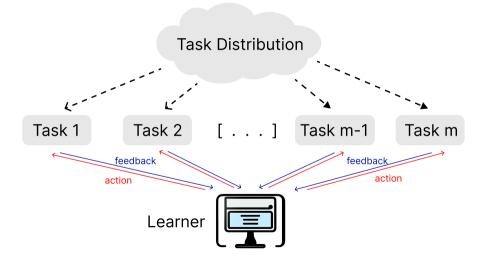


A Class of Bandit Tasks

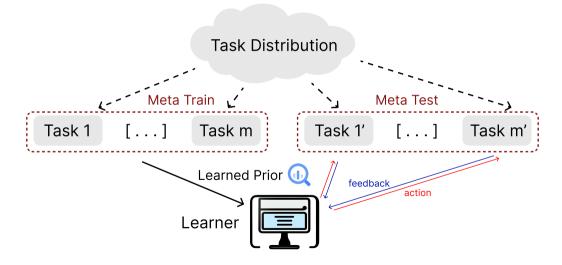
- Recommend items to different customers
- Solve online shortest routing in different networks
- · Assign price to different items using an online pricing algorithm



Meta Learning a Prior for Bandits



Meta Learning a Prior for Bandits



Plan

1 Multi-Armed Bandits and Meta-Learning

2 Denoising Diffusion / Score-Based Models

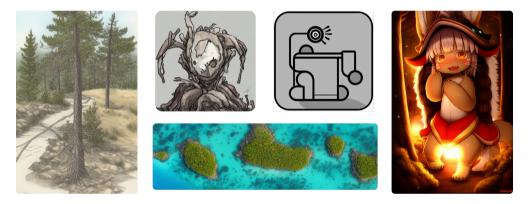
3 Algorithms

4 Numerical Experiments

5 Conclusion and Perspectives

The Rise of Diffusion Models

- State of the art image generation models: Imagen, Dalle-2, Midjourney, Stable Diffusion
- And beyond: audio synthesis, molecular generation, RL trajectories



Diffusion Models in a Nutshell

Fixed forward diffusion process

Noise

Generative reverse denoising process

(Source: 2022 CVPR diffusion model tutorial)

- Add noise in the forward process: $q(X_{\ell+1} | x_{\ell}) = \mathcal{N}(X_{\ell+1}; \sqrt{\alpha_{\ell+1}}x_{\ell}, (1 \alpha_{\ell+1})I)$
- Parameterize the reverse process with a denoiser h_{θ} both are Gaussian by construction

 $p_{\theta}(X_{\ell} | x_{\ell+1}) = q(X_{\ell} | x_{\ell+1}, X_0 = h_{\theta}(x_{\ell+1}, \ell+1)) \propto q(x_{\ell+1} | X_{\ell})q(X_{\ell} | X_0 = h_{\theta}(x_{\ell+1}, \ell+1))$

Diffusion Models in a Nutshell

Fixed forward diffusion process

Noise

Generative reverse denoising process

(Source: 2022 CVPR diffusion model tutorial)

- The denoiser is trained to 'denoise'
- Diffusion model as maximum likelihood estimation / reverse-time SDE
- The iterative sampling process allows for better posterior sampling

Gaussian Prior versus Diffusion Prior

	Gaussian Prior	Diffusion Prior
Model Learning	Maximum likelihood Closed-form, fast	Deep learning Harder and slower
Posterior sampling	Closed-form, fast	Approximate, slower
Expressive power	Limited	Strong
Data efficiency	Bad?	Good?

Plan

1 Multi-Armed Bandits and Meta-Learning

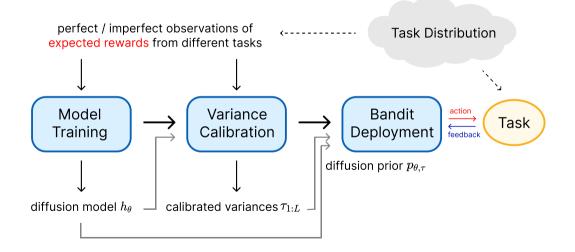
2 Denoising Diffusion / Score-Based Models

3 Algorithms

4 Numerical Experiments

5 Conclusion and Perspectives

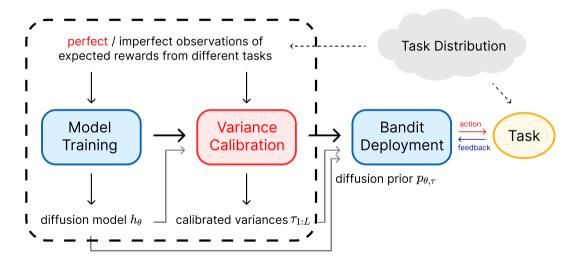
Overview



Assume that a trained diffusion model is provided

Algorithms

Variance Calibration



Goal: Calibrate the variance of the reverse diffusion process $p_{\theta}(X_{\ell} | x_{\ell+1})$

• The variance of the original $p_{\theta}(X_{\ell} | x_{\ell+1})$ is suboptimal: overly confident

Goal: Calibrate the variance of the reverse diffusion process $p_{\theta}(X_{\ell} | x_{\ell+1})$

- The variance of the original $p_{\theta}(X_{\ell} | x_{\ell+1})$ is suboptimal: overly confident
- Instead, consider

$$p_{\theta,\tau}(X_{\ell} | x_{\ell+1}) = \int q(X_{\ell} | x_{\ell+1}, x_0) p'_{\theta,\tau}(x_0 | x_{\ell+1}) dx_0$$

where

• $p'_{\theta,\tau}(X_0 | x_{\ell+1})$ is a Gaussian distribution centered at $\hat{x}_0 = h_{\theta}(x_{\ell+1}, \ell+1)$ with covariance diag $(\tau^2_{\ell+1})$

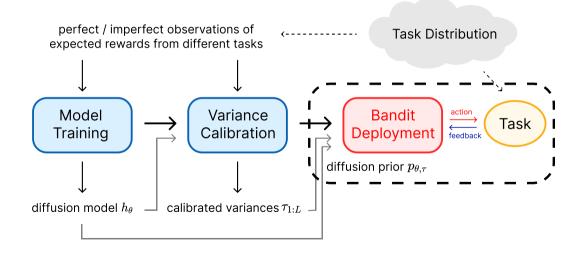
• τ^2 is the mean squared reconstruction error $\tau^a_{\ell} = \sqrt{\mathbb{E}_{X_0, X_{\ell}}[\|X^a_0 - h^a_{\theta}(X_{\ell}, \ell)\|^2]}$

Goal: Calibrate the variance of the reverse diffusion process $p_{\theta}(X_{\ell} | x_{\ell+1})$

- $\tau^2 \text{ is the mean squared reconstruction error } \tau^a_\ell = \sqrt{\mathbb{E}_{X_0, X_\ell}[\|X^a_0 h^a_\theta(X_\ell, \ell)\|^2]}$
 - τ^2 can be easily estimated when having access to the exact expected rewards $x_0 = \mu$ from different tasks

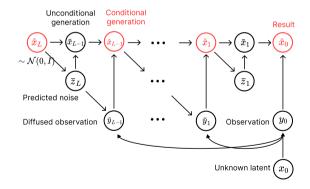
Goal: Calibrate the variance of the reverse diffusion process $p_{\theta}(X_{\ell} | x_{\ell+1})$

- τ^2 is the mean squared reconstruction error $\tau^a_\ell = \sqrt{\mathbb{E}_{X_0, X_\ell}[\|X^a_0 h^a_\theta(X_\ell, \ell)\|^2]}$
 - τ^2 can be easily estimated when having access to the exact expected rewards $x_0 = \mu$ from different tasks
 - We also develop method to estimate au^2 from incomplete and noisy data



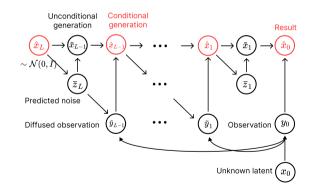
Goal: Sample from $p_{\theta,\tau}(X_0 | y_0)$ provided imperfect observation y_0

• In MAB, $y_0 = \mathcal{H}$ is the history



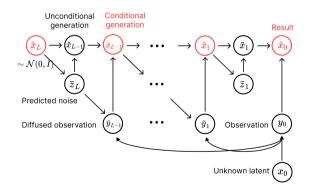
Goal: Sample from $p_{\theta,\tau}(X_0 | y_0)$ provided imperfect observation y_0

- In MAB, $y_0 = \mathcal{H}$ is the history
- Condition the reverse process on y_0
 - Sample x_L from $X_L | y_0$
 - Sample x_ℓ from $X_\ell | x_{\ell+1}, y_0$



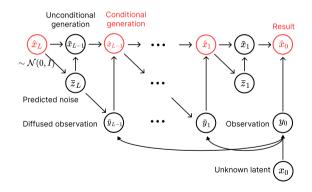
Goal: Sample from $p_{\theta,\tau}(X_0 | y_0)$ provided imperfect observation y_0

- In MAB, $y_0 = \mathcal{H}$ is the history
- Condition the reverse process on y_0
 - Sample x_L from $X_L | y_0$
 - Sample x_ℓ from $X_\ell \,|\, x_{\ell+1}, y_0$
- Initialization: Sampled from $\mathcal{N}(0, I)$



Goal: Sample from $p_{\theta,\tau}(X_0 | y_0)$ provided imperfect observation y_0

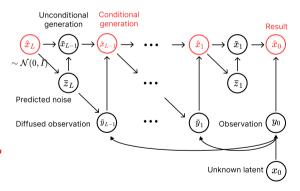
- In MAB, $y_0 = \mathcal{H}$ is the history
- Condition the reverse process on y_0
 - Sample x_L from $X_L | y_0$
 - Sample x_ℓ from $X_\ell \,|\, x_{\ell+1}, y_0$
- Initialization: Sampled from $\mathcal{N}(0,I)$
- Recursion: Mix an unconditional sampled \tilde{x}_{ℓ} with a *diffused* \tilde{y}_{ℓ}



Thompson Sampling with Diffusion Prior

Goal: Sample from $p_{\theta,\tau}(X_0 | y_0)$ provided imperfect observation y_0

- In MAB, $y_0 = \mathcal{H}$ is the history
- Condition the reverse process on y_0
 - Sample x_L from $X_L | y_0$
 - Sample x_ℓ from $X_\ell \,|\, x_{\ell+1}, y_0$
- Initialization: Sampled from $\mathcal{N}(0,I)$
- Recursion: Mix an unconditional sampled \tilde{x}_{ℓ} with a *diffused* $\tilde{y}_{\ell} \rightarrow \text{How}$?



Thompson Sampling with Diffusion Prior

Goal: Sample from $p_{ heta, au}(X_0 \,|\, y_0)$ provided imperfect observation y_0

• For arm *a* that has never been pulled, set $\tilde{q}(x_{\ell}^a | x_{\ell+1}, y_0) = p_{\theta,\tau}(x_{\ell}^a | x_{\ell+1})$

Thompson Sampling with Diffusion Prior

Goal: Sample from $p_{\theta,\tau}(X_0 | y_0)$ provided imperfect observation y_0

- For arm *a* that has <u>never been pulled</u>, set $\tilde{q}(x_{\ell}^{a} | x_{\ell+1}, y_{0}) = p_{\theta,\tau}(x_{\ell}^{a} | x_{\ell+1})$
- For arm a that has been pulled at least once
 - $\hat{\mu}_t^a$ empirical mean; σ_t^a scaled noise standard deviation
 - $\bar{z}_{\ell+1}$ noise predicted by the denoiser from $x_{\ell+1}$

•
$$\tilde{y}_{\ell}^{a} = \sqrt{\bar{\alpha}_{\ell}}\hat{\mu}_{t}^{a} + \sqrt{1 - \bar{\alpha}_{\ell}}\bar{z}_{\ell+1}^{a}$$
 the diffused observation [where $\bar{\alpha}_{\ell} = \prod_{k=1}^{\ell} \alpha_{k}$]

Algorithms

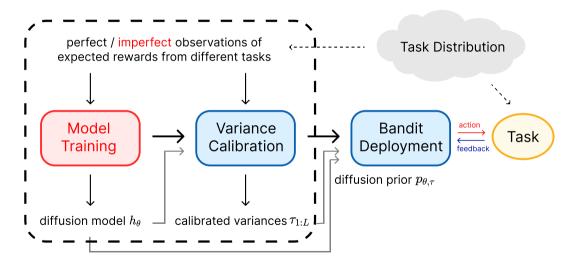
Algorithm Thompson Sampling with Diffusion Prior (DiffTS)

- 1: Input: Trained denoiser h_{θ} , denoising variance $(\tau_{\ell}^2)_{\ell \in \{1,...,L\}}$, presumed noise std σ' 2: for t = 1, ..., doPosterior Sampling Sample $x_L \sim \mathcal{N}(0, I)$ 3: for $\ell \in L - 1 \dots 0$ do 4: Predict clean sample $\hat{x}_0 = h_{\theta}(x_{\ell+1}, \ell+1)$ and associated noise $\bar{z}_{\ell+1}$ 5: Compute diffused observation $\tilde{y}_{\ell}^{a} = \sqrt{\bar{\alpha}_{\ell}} \hat{\mu}_{t-1}^{a} + \sqrt{1 - \bar{\alpha}_{\ell} \bar{z}_{\ell+1}}$ 6: for $a \in \mathcal{A}$ do 7: If $N_{\ell-1}^{a} = 0$, sample $x_{\ell}^{a} \sim p_{\theta,\tau}(X_{\ell}^{a} | x_{\ell+1})$ 8. If $N_{t-1}^a > 0$, sample 9: $x_{\ell}^{a} \sim \tilde{q}(X_{\ell}^{a} | x_{\ell+1}, y_{0}) \propto p_{\theta,\tau}(X_{\ell}^{a} | x_{\ell+1}) \mathcal{N}(X_{\ell}^{a}; \tilde{y}_{\ell}^{a}, \bar{\alpha}_{\ell}((\sigma_{t}^{a})^{2} + \rho_{\ell}(\tau_{\ell+1}^{a})^{2})$ Pull arm $a_t \in \arg \max x_0^a$ 10:
- 11: Update number of pulls N_t^a , scaled std σ_t^a , and empirical reward $\hat{\mu}_t^a$ for $a \in \mathcal{A}$

Back to the training of diffusion model

Algorithms

Model Training



Model Training

Goal: minimize mean squared loss $\mathbb{E}_{\ell,X_0,X_\ell}[||X_0 - h_{\theta}(X_{\ell},\ell)||^2]$

• Training from perfect data x_0 : minimize standard diffusion loss

$$\mathbb{E}_{\ell,x_0,x_\ell \sim X_\ell | x_0} [\| x_0 - h_\theta(x_\ell,\ell) \|^2]$$

Model Training

Goal: minimize mean squared loss $\mathbb{E}_{\ell,X_0,X_\ell}[||X_0 - h_{\theta}(X_{\ell},\ell)||^2]$

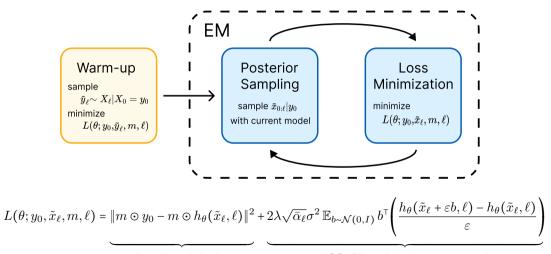
• Training from perfect data x_0 : minimize standard diffusion loss

$$\mathbb{E}_{\ell,x_0,x_\ell \sim X_\ell \,|\, x_0} [\|x_0 - h_\theta(x_\ell,\ell)\|^2]$$

- Contribution: Training from incomplete and noisy data $y_0 = m \odot (x_0 + z)$ where
 - $m \in \{0,1\}^K$ is a binary mask
 - z is a noise vector sampled from $\mathcal{N}(0, \sigma^2 I)$

Challenge: both x_0 and x_ℓ are not available

Training from Incomplete and Noisy Data



ignored masked value

MC-SURE regularization to counter noise

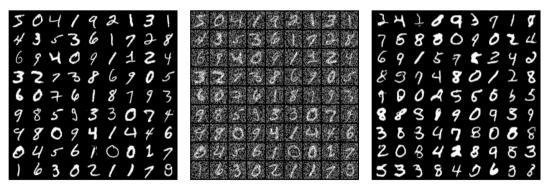
Yu-Guan Hsieh

Thompson Sampling with Diffusion Prior

September 2022

29 / 43

Training from Incomplete and Noisy Data: Working Examples

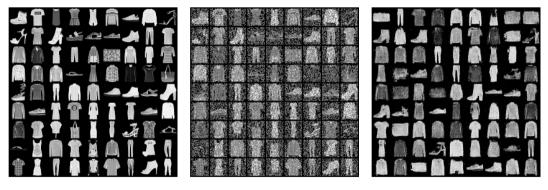


Clean samples

Training samples

Generated samples

Training from Incomplete and Noisy Data: Working Examples



Clean samples

Training samples

Generated samples

Plan

1 Multi-Armed Bandits and Meta-Learning

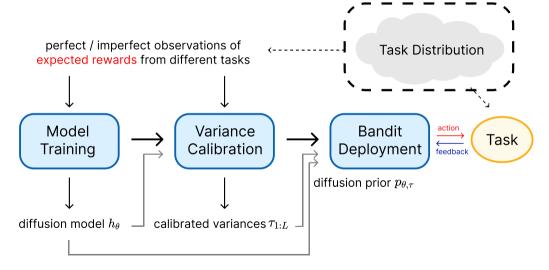
2 Denoising Diffusion / Score-Based Models

3 Algorithms

4 Numerical Experiments

5 Conclusion and Perspectives

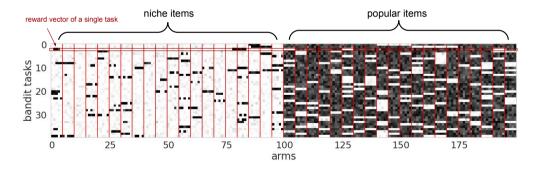
Describing the Task Distribution



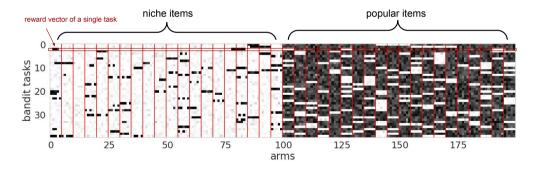
Recommend items to customers

- Popular items: gift cards, electronics, clothing, ...
- Niche items: artworks, fan merch,

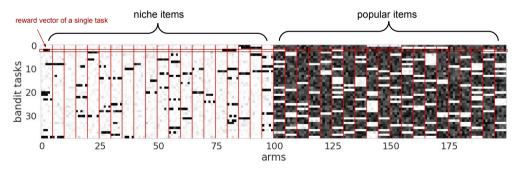
• K = 200 arms (items) $\mu \in [0, 1]^{200}$ are split into 40 groups with equal size



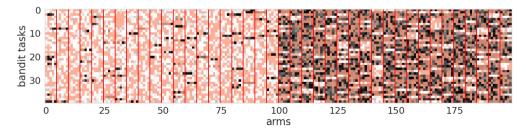
- K = 200 arms (items) $\mu \in [0, 1]^{200}$ are split into 40 groups with equal size
- 20 groups of arms represent the popular items that tend to have higher means



- K = 200 arms (items) $\mu \in [0, 1]^{200}$ are split into 40 groups with equal size
- 20 groups of arms represent the popular items that tend to have higher means
- 20 groups of arms represent the niche items that have lower means in general but some of these items get much higher means

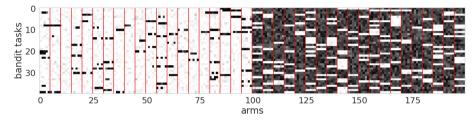


- K = 200 arms (items) $\mu \in [0, 1]^{200}$ are split into 40 groups with equal size
- 20 groups of arms represent the popular items that tend to have higher means
- 20 groups of arms represent the niche items that have lower means in general but some of these items get much higher means
- Imperfect data: noise with standard deviation 0.1 and missing rate 0.5

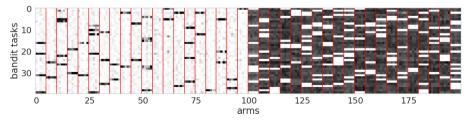


Samples Generated by Learned Diffusion model

Perfect data

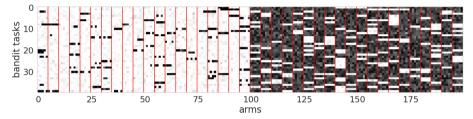


Trained on clean data

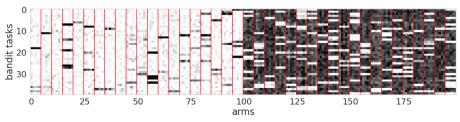


Samples Generated by Learned Diffusion model

Perfect data



Trained on incomplete noisy data



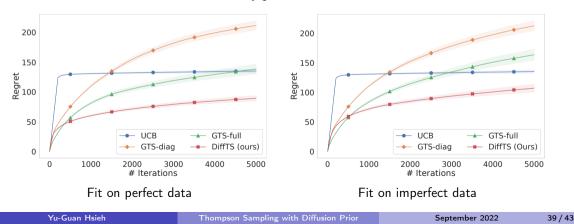
Further Experimental Details

- Training set of size 5000; Calibration set of size 1000; Test on 100 tasks
- To generate reward add Gaussian noise with standard deviation $0.1\,$
- Baselines: UCB, Thompson sampling with diagonal or full covaraince Gaussian prior
- Gaussian mean and variance/covariance are fitted using the same perfect/corrupted training + calibration set
- Algorithms are run with groundtruth noise standard deviation 0.1

Experimental Results

Regret is the cumulative difference between an algorithm and the one that consistently

pulls an optimal arm a^* : $\operatorname{Reg}_T = T\mu^{a^*} - \sum_{t=1}^{r} \mu^{a_t}$



Plan

1 Multi-Armed Bandits and Meta-Learning

2 Denoising Diffusion / Score-Based Models

3 Algorithms

4 Numerical Experiments

5 Conclusion and Perspectives

Summary

- We propose to learn the prior of a bandit algorithm with diffusion models under the meta-learning framework
- We design a Thompson sampling algorithm to use the learned diffusion model that balances between prior and observations
- We design a training procedure to learn diffusion model from incomplete and noisy data
- We demonstrate the potential of our approach through several experiments

Perspectives

- Contextual bandits \rightarrow Distribution in function space
- Training with more complex missing mechanism (e.g., logged data) and general noise
- Theoretical justification of the benefit of the diffusion model
- Can we have a theoretically founded safeguard mechanism?

Perspectives

- Contextual bandits \rightarrow Distribution in function space
- Training with more complex missing mechanism (e.g., logged data) and general noise
- Theoretical justification of the benefit of the diffusion model
- Can we have a theoretically founded safeguard mechanism?

Thank you for your attention

Algorithm Meta Learning for Bandits with Diffusion Models

- 1: Meta Training
- 2: Input: Observations of expected rewards $(\mu_B)_B$ from different tasks $B \sim \mathcal{T}$
- 3: Train a diffusion model h_{θ} to model the distribution of the mean rewards
- 4: Variance Calibration
- 5: Input: Observations of expected rewards $(\mu_B)_B$ from different tasks $B \sim \mathcal{T}$
- 6: Estimate the mean squared reconstruction error $(\tau_{\ell})_{\ell \in \{1,...,L\}}$ for the model h_{θ} at different noise levels to calibrate the variance
- 7: Meta Test/Deployment
- 8: For any new task B, run Thompson sampling with the learned diffusion prior