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Abstract

Humans describe complex scenes with compositionality, using simple text descrip-
tions enriched with links and relationships. While vision-language research has
aimed to develop models with compositional understanding capabilities, this is
not reflected yet in existing datasets which, for the most part, still use plain text to
describe images. In this work, we propose a new annotation strategy, graph-based
captioning (GBC) that describes an image using a labelled graph structure, with
nodes of various types. The nodes in GBC are created using, in a first stage, object
detection and dense captioning tools nested recursively to uncover and describe
entity nodes, further linked together in a second stage by highlighting, using new
types of nodes, compositions and relations among entities. Since all GBC nodes
hold plain text descriptions, GBC retains the flexibility found in natural language,
but can also encode hierarchical information in its edges. We demonstrate that
GBC can be produced automatically, using off-the-shelf multimodal LLMs and
open-vocabulary detection models, by building a new dataset, GBC10M, gathering
GBC annotations for about 10M images of the CC12M dataset. We use GBC10M
to showcase the wealth of node captions uncovered by GBC, as measured with
CLIP training. We show that using GBC nodes’ annotations—notably those stored
in composition and relation nodes—results in significant performance boost on
downstream models when compared to other dataset formats. To further explore
the opportunities provided by GBC, we also propose a new attention mechanism
that can leverage the entire GBC graph, with encouraging experimental results
that show the extra benefits of incorporating the graph structure. Our datasets are
released at https://huggingface.co/graph-based-captions.

1 Introduction

The availability of huge paired image/caption datasets has revolutionized our ability to produce joint
vision-language embedding, paving the way for tasks like efficient caption-guided image generation
within powerful multimodal foundation models [2, 36, 38, 50]. The quality and granularity of
these datasets plays, therefore, a crucial role. While quality can be addressed by filtering out
data [17, 22, 53] or, inversely, by improving caption quality through recaptioning [14, 16, 35, 45],
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there is ample interest in the community to provide more detailed, fine-grained information for each
image [3, 7, 15, 42]. To obtain better annotations, we draw inspiration from compositionality,
a fundamental characteristic of human perception that is reflected in the natural language used to
describe our surroundings [4, 10, 12, 20, 29, 30]. Compositionality plays an especially important
role when examining larger images found in the wild, which have a rich coarse-to-fine, hierarchical
structure, commonly represented as a scene graph [31]. While scene graphs have been successfully
applied to image retrieval [31, 54], generation [18, 44], and pre-training [26, 28], the scale of scene
graph dataset is typically small. For instance, Visual Genome [33] only contains around 100k images.

Contributions. To overcome the limitations of existing datasets and annotation formats that either
struggle to represent the hierarchical nature of scenes or are of small size and lack flexibility in their
description, this paper makes a series of contributions as summarized below.
1. We propose graph-based captioning (GBC), a new vision-language data format that captions im-
ages with a graph-based structure akin to scene graphs while retaining the flexibility and intuitiveness
of plain text description. GBC contains four types of nodes: (1) an image node with captions of the
entire image, (2) entity nodes that contain descriptions of individual objects, (3) composition nodes
that link objects in the images of the same type, and (4) relation nodes that describe the spatial (“the
tree is to the left of the tower”) or semantic (“The branch is covered in snow”) relationships between
objects of different types (§ 3.1).
2. We design a workflow to produce GBC annotations at scale. Inspired by recent recaptioning
approaches [14, 16, 35, 45], we generate GBC annotations using the OSS LLaVA-1.6 [42, 43]. First,
LLaVA generates short and long captions for the entire image, used to extract entities. Then, an object
detection model (YOLO-World [9]) is employed to find bounding boxes for each entity. Subsequently,
the same procedure is recursively invoked to produce a GBC for each proposal. Finally, LLaVA-1.6
is prompted to produce composition and relation captions that connect multiple entity nodes (§ 3.2).
3. We create large-scale GBC dataset containing 10 million images with ≈ 534 words per image
using that workflow. While ours is the first vision-language dataset that contains structured captions,
a few recent datasets contain dense annotations, and only [65] has a scale that is similar to ours.
Drawing on graph-encoders, we also design a baseline architecture to utilize this structure, using a
new attention mechanism, structure-aware hierarchical attention (SAHA) (§ 4).
4. We demonstrate experimentally in § 5 that the diversity of captions found in GBC nodes
improves CLIP model performance across image-to-text retrieval, text-to-image retrieval, composi-
tionality, and semantic segmentation tasks, while retaining comparative performance on zero-shot
ImageNet classification. Our ablations highlight that it is not the density or scale of our dataset, but the
structured nature itself, that leads to better performance. Remarkably, we observe that composition
and relation nodes, which can only be obtained through the GBC workflow, boost performance.
Finally, we perform ablation on the influence of annotation format on retrieval performance using a
set-aside test set from GBC. In this case, we see that SAHA, when fed GBC annotations, provides
comparable or even better performance than that obtained when describing an image with detailed
captions, suggesting that GBC can be a promising alternative to traditional image captioning formats.

2 Related works

In this section, we discuss related works on vision-language datasets. We refer the readers to
Appendix A for works that are specific to CLIP [50] training.

Vision-language datasets. First vision-language datasets were manually built using human anno-
tations, such as Flickr30k [69], COCO [41] and Visual Genome [33]. This yielded annotations of
high quality, but unfortunately of short length, and in limited amounts (with no dataset containing
more than 130k images). Several studies have then demonstrated the benefits of using larger scale
datasets obtained by crawling the web, such as YFCC100M [59], RedCaps [13], or Wikipedia-based
image-text dataset (WIT) [57]. The quality of these data became a concern when it was noticed that in
some situations the caption was only loosely related (or not related at all) with the image, which can
be detrimental to the overall performance [52]. This motivated researchers to use automatic filtering
procedures to select higher-quality data samples, like in Localized Narratives [48] or Conceptual
Captions (CC3M) [56], and its successor CC12M [6]. These efforts have reached billion scale with
LAION-5B [53], and LAION-CAT [49]. In a similar vein, Meta-CLIP [68] reproduces the processing
of the seminal CLIP paper [50] on a subset of the Common Crawl dataset, SemDeDup [1] relies on
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Figure 1: An illustration of our proposed graph-based captions. The image node, entity nodes, composition
nodes, and relation nodes are respectively colored in red, blue, green, and yellow. The color texts in the captions
correspond to the labels of the outgoing edges. More examples are provided in Appendix C.3.

the embeddings provided by foundation models to filter data and remove duplicates, while DFN [17]
uses filtering networks trained on high quality data to extract subsets of Common Crawl.

VL datasets with dense captioning. It was noticed recently that using entirely generated captions
from raw images, as in DAC [14] and AS-1B [65], could improve results over filtering approaches.
These datasets are characterized by their long and detailed captions that describe every element
within a scene. Complementing these efforts, Urbanek et al. [61] introduced DCI, a dataset featuring
similarly dense annotations but curated by humans and on a smaller scale. Alternatively, DOCCI [46]
focuses on a set of only 15k high quality, high resolution, paired image-captions, manually selected
and annotated by one of the authors, with typical caption length of more than 135 words. In the
ImageInWords [21] dataset, captions are iteratively improved by humans, on top of previously human
or machine annotated captions, yielding 9K densely captioned images.

3 Improving image annotations with graph-based captioning

We introduce in this section our new captioning format to represent an image, explain how we can
use any off-the-shelf multimodal large language model (MLLM) and open-vocabulary detection
model to obtain such captions, and briefly describe the two datasets GBC1M, and GBC10M that we
construct following the proposed workflow. Additional details about the data preparation process and
the datasets can be found in the Appendices B and C.

3.1 Representing an image with graph-based captions

To encode the structured information contained in an image, we propose to represent each image
as a directed acyclic graph (DAG), denoted as G = (V, E). Each node of the graph v ∈ V is
associated with a bounding box. Starting with the root node, which corresponds to the entire image
(image node), other nodes can either hold a set of objects (composition node and relation node),
or a single object in the image (entity node). Moreover, to benefit from the expressive power of
natural language descriptions and to ensure smooth integration of our annotations into the existing
ecosystems of methods that rely primarily on image-text pairs, we label each node v with a set of
captions Cv = {C1, . . . , Cnv}.
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Figure 2: Our image annotation process involves four types of queries that are performed in two separate stages,
with the detection model serves to single out the regions that are used for different queries.

The edges, on the other hand, are used to encode the hierarchy between the nodes. More specifically,
there is an edge e ∈ E from u to v only if the content associated to v is part of the content associated
to u. This relation is also reflected by the edge label Le which should appear in the captions of the
source node u and be able to represent the object(s) associated to the target node.3

An examplar GBC, generated automatically through our workflow is provided in Figure 1. It should
be noted that the only manual addition in that graph comes from the "title label" of each node, which
is obtained by taking the union of labels found in its incoming edges. Compared to the standard
scene graph annotation, the use of node captions provides flexibility to describe complex concepts,
while the underlying graph still captures the inherent structure of the image. Our dataset, whose
construction is detailed in Section 3.2 next, includes several different types of captions tailored to the
structure of the DAG. At the root image node, we provide both detailed and short captions to cater to
varying levels of granularity. Captions at composition nodes and relation nodes explicitly describe
the arrangement and interaction of multiple objects, while the captions at the entity nodes provide
detailed description of a single object.

3.2 GBC dataset construction workflow

We show how to produce GBC annotations automatically, using any pre-trained MLLM and open-
vocabulary detection model. This results in a workflow that is comparable, in compute time and
complexity, to that of other widespread recaptioning approaches. At a high level, we use a MLLM
model to provide captions and identify potential entity nodes, followed by a detection model to
provide bounding box coordinates for these entities.

Data annotation. Our overall process to annotate a single image is shown in Figure 2. To account
for the different types of nodes, we design four query templates as listed below:

• Image query: We ask the model to provide detailed caption for the image, identify prominent
elements, and summarize the long caption with a concise one that contains all these elements. The
identified elements are then passed to the detection model to obtain the bounding boxes.

• Entity query: For each bounding box, we crop out the region and ask the model whether a
specific object appears in the cropped image. Moreover, we also ask the model to describe the
object and identify prominent elements of the object when it is present. The identified elements
are again passed to detection models for detection.

• Composition query: In the case where multiple bounding boxes are returned for a single type of
object, we ask the model to describe the composition of these objects with an annotated image.

• Relation query: For image or entity nodes with more than two children, we ask the model to
describe the relations between its children.

Provided that there is no guarantee that all the detected objects would end up as a node in the
graph—consider the case where the MLLM says that the object is not present or just fails to reply in

3Ideally, we would also like to distinguish between multiple appearances of the same text in a caption.
However, this is not explicitly handled by our current dataset construction workflow so we omit it here.
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GBC1M GBC10M

# Images 1,013,592 10,138,757
# Vertices / Image 12.12 12.24
# Edges / Image 22.28 21.81
# Captions / Image 17.40 17.67
# Words / Image 593.14 533.98
Average Graph Diameter 4.55 4.41

Table 1: Key statistics of the GBC1M and GBC10M datasets.
We report number of images, average number of vertices, edges,
captions, and words per image, and average graph diameter.
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Figure 3: CLIP score distribution of dif-
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the correct format—we split the entire process into two stages, and we only perform composition
queries and relation queries after discovering all the entity nodes. Finally, to improve efficiency and
to reduce redundant information, we train two dedicated classifier on top of Jina Embeddings [23] to
decide whether a piece of text is suitable for object detection and whether two texts can represent the
same object in an image. The former is applied to every identified element while the later results in
merging of nodes when a new query targets a region that has already been queried with similar texts.

3.3 GBC1M and GBC10M

Following the process outlined in Section 3.2, we annotate the CC12M dataset [6] with graph-
based captions using LLaVA-1.6 [42, 43] as the MLLM and Yolo-World [9] as the open-vocabulary
detection model. Specifically, we construct two sets of annotations: GBC1M for a subset of around
1M of images, with all the queries performed with the Yi-34B version of LLaVA-1.6, and GBC10M
for a subset of around 10M of images, with LLaVA-1.6 Yi-34B for image and composition queries,
and LLaVA-1.6 Mistral-7B for entity and relation queries.4

We provide statistics of the above two datasets in Table 1. We note that these two datasets have
very similar per-image statistics, with the number of words being the only exception, as LLaVA-1.6
Yi-34B tends to provide longer descriptions than LLaVA-1.6 Mistral-7B. Moreover, our datasets use
an average number of around 500 words to describe each image. This is comparable to other dataset
with rich annotations such as DCI (1111 words/img) [61] and DOCCI (136 words/img) [46]. We also
compute the CLIP scores between the captions and their corresponding regions using the DFN-5B
CLIP model [17], and we report their distribution for the GBC10M dataset in Figure 3. We note
that the original CC12M caption achieves the highest CLIP scores, followed by the short synthetic
caption for the entire image. This can be explained by the fact that in these two cases, the involved
image-caption pairs more closely align with the training data of standard CLIP models.

4 Encoding GBC via structure-aware hierarchical attention

Alongside many ways to leverage GBC annotations, as we shall present in Section 5, we propose a
simple text encoder architecture to incorporate structural information encoded in GBC graph along
with node captions. Specifically, we present structure-aware hierarchical attention (SAHA) block
which treats each caption as an individual sample, and introduces an additional cross-attention layer
that enforces the captions to attend to their children.
Formally, we consider a caption graph GC = (C, EC) with vertices C =

⋃
v∈V Cv and edges

EC ⊆ C × C such that (C,C ′) ∈ EC if and only if C ∈ Cu, C ′ ∈ Cv, e = (u, v) ∈ E , and the label
Le is included within the caption C. In words, each vertex in the graph represents a caption from a
node of the original graph and there is an edge from one caption to another only if the second caption
describes part of the first caption. After tokenization of the captions, we can map the edge labels to a

4Our larger dataset does not cover the entire CC12M both because some images were no longer accessible at
the time we accessed the images, and because we discard images for which the MLLM model’s reply to the
image query does not comply with the prescribed format.
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Figure 4: Illustration of the proposed SAHA block when applied to the graph shown in Figure 1. For the sake of
simplicity, we assume here there is only one caption per node.

set of token positions of the source caption, which we write as Pe. Then, the target caption annotates
the source caption via the tokens at positions Pe. Therefore, we can simply consider cross-attention
with queries from these tokens and keys and values from the target caption. We illustrate this idea in
Figure 4, where we zoom in on the additional cross-attention layer (SACA) on the right side of the
figure. For completeness, we also provide the corresponding mathematical formula in Appendix D.
Our text encoder then stacks a number of SAHA blocks, effectively interleaving the vanilla self-
attention layers that process, local, intra-caption information, with the structure-aware cross-
attention (SACA) layers that process global, inter-caption information in a structure-aware manner.
Furthermore, the model acts as a classic text encoder in the absence of edges in the graph, i.e., when
EC = ∅, dropping all SACA blocks.

Complexity analysis. To estimate the computational complexity of our approach, we assume
that the captions have a fixed sequence length n. Then, implementing SACA using masked cross-
attentions between captions leads to a total complexity of O(|EC |n2). Additionally, we must account
for the self-attention operations, resulting in a combined complexity of O(|C|n2 + |EC |n2). Provided
that many of the graphs in our dataset are trees, we have |EC | = |C| − 1 and the complexity simplifies
to O(|C|n2). In contrast, a naive approach that performs self-attention on the concatenated set of all
captions would result in a significantly higher complexity of O(|C|2n2).

5 Experiments

We present in this section a comprehensive set of experiments to benchmark different image annotation
schemes. Specifically, using CLIP model training as the main task, we show that GBC annotations can
bring improvements on a range of benchmarks across classification, retrieval, and dense prediction
tasks, compared to existing annotation schemes (Section 5.3). On retrieval tasks, we demonstrate how
GBC allows one to encode denser, more descriptive textual information to better represent images
as shown by the performance gain compared to existing annotation formats (Section 5.4). Missing
experimental details are provided in Appendix E.

5.1 Annotation formats

We outline below the different types of image annotations that are considered in our experiments,
each providing different opportunities to leverage information from the image.
Short caption. Each image is paired with a short caption, as in common image-text datasets.
Long caption. One can improve image description using a longer caption. We use long captions in
our dataset. They are of 110 words on average, as compared to short captions, of only 28 words on
average. We extend the context length of text encoders in CLIP models from 77 to 512 for this setup.
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Annotation
Flickr-1k MSCOCO-5k

ImageNet SugarCrepe ADE20K
T2I I2T T2I I2T

CC12M 46.4 64.6 25.0 39.4 39.2 72.9 41.7

Short 56.3 73.2 30.7 46.7 38.8 76.0 42.0
Long 56.4 75.2 31.8 50.1 39.6 77.0 42.8
Region 58.3 76.6 31.5 49.1 38.5 75.6 43.5
GBC-captions 60.6 79.3 34.1 51.9 40.8 76.7 45.0
GBC-concat 56.1 76.0 31.4 48.5 39.0 75.7 42.1
GBC-graph 58.1 76.2 32.2 49.5 38.2 75.2 43.8

Table 2: Comparative performance on various existing benchmarks when trained using different annotation
schemes. For retrieval tasks we report Recall@1, and for ADE20K we report the mIOU. As a baseline, we also
report performance of a model trained on the same set of images using original CC12M captions. The highest
scores for each task are highlighted in bold, and the second-highest scores are underlined.

Region captions. Alternatively, more captions can be provided for an image, especially those that
describe a specific region of the image. While this format includes all region captions, it does not
include the relational information between region descriptions found in GBC.
Graph-based captions. Finally, we consider the GBC format as proposed in Section 3.1. The
GBC format includes region captions, but also provides additional information, stored in relation and
composition nodes. With this in mind, we explore three different ways to leverage GBC annotations:
• A direct way to leverage GBC is to treat captions for all nodes in the graph as positive texts for

the image, i.e. as what we do for region captions. We refer to such method as GBC-captions.
• Another strategy is to traverse from the root image node through the graph and concatenate the

captions at the visited vertices into a single long caption. We then train a CLIP model with 512
context length in the standard fashion. We refer to this method as GBC-concat.

• To fully benefit from the graph information, when available, we leverage the SAHA block proposed
in Section 4. This allows us to encode the entire graph into text embeddings that also contain
information from their respective subgraph. We refer to this method as GBC-graph.

As GBC annotation encapsulates all existing short, long, and region caption formats, we are able
to instantiate all the setups by using only a subset of annotation available in our curated GMC10M
dataset. Specifically, taking only the short or detailed caption at the root image node creates the short
and long caption setup, respectively. To mimic the region caption setup, we drop the relation and
composition captions from GBC annotations. By turning GBC into these settings, we ensure the
same quality of text annotations across different methods.

5.2 Experimental setup

We perform CLIP training on our GBC10M dataset, while leaving out 10,151 samples as the test set.
Following common practice, we use the CLIP score computed by a pre-trained CLIP model [17] to
filter our training set, discarding the 5% of captions with the lowest scores for each type. In addition,
we retain the original CC12M captions associated with each image. Specifically, in all setups, both
the original caption and the short synthetic caption are consistently used as positive texts for the
image during training. This prevents the severe distribution shifts that could occur from using only
long or region captions when evaluating on standard benchmarks.
Objective. To pair an image with multiple captions in training CLIP models, we adopt a multiple-
positive contrastive loss in the spirit of LaCLIP [16] and DAC [14]. Briefly speaking, compared to
standard CLIP objective, the multiple-positive loss sums over the loss on each positive captions of an
image while all the captions from the images in the same batch are used in the normalization term.
Model and hyperparmeters. We use the standard CLIP ViT-B/16 model, with the only difference
of longer context length of text encoder for long caption and GBC-concat, and a replacement of the
vanilla transformer block by the SAHA block in text encoder for GBC-graph. We fix the global batch
size (i.e., number of images in each batch) to 4,096 for all the methods. The models are trained for
45,000 steps with AdamW and cosine scheduler at a learning rate of 10−3. This roughly correspond
to 20 epochs of training. We evaluate at the EMA checkpoint at epoch 10, as we observe that further
training provides little to no improvement in performance across the benchmarks.
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Annotation
Short Long GBC-captions GBC-concat GBC-graph

T2I I2T T2I I2T T2I I2T T2I I2T T2I I2T

Short 85.8 86.2 85.0 87.2 57.3 37.0 87.4 88.2 - -
Long 86.4 87.5 95.4 95.7 44.3 33.1 90.5 91.4 - -
Region 85.3 86.1 85.5 88.2 91.5 79.3 89.5 90.0 - -
GBC-captions 86.8 87.6 87.2 89.6 91.3 80.9 90.1 91.0 - -
GBC-concat 86.1 86.5 92.7 93.5 57.5 37.9 94.6 94.9 - -
GBC-graph 84.3 85.2 84.9 87.6 90.8 79.3 89.1 89.7 95.7 96.1

Table 3: Image and text retrieval performance on GBC test set when trained and evaluated using different
types of annotations (Rows: models trained from different annotations; Columns: Evaluations on different
annotations). For the GBC-captions column, we include all the captions from our graph by default except in
cases where training is done solely on the region annotations. In this case, excluding relation and composition
captions, as done during training, results in better performance.

5.3 Evaluations on existing benchmarks

We compare the CLIP models derived from different annotation schemes on an array of evaluation
benchmarks, including: Flickr-1k [47] and MSCOCO-5k [41] for zero-shot retrieval, ImageNet [51]
for zero-shot classification, SugarCrepe [27] for compositional understanding evaluation, and
ADE20k [76] for semantic segmentation that measures models’ dense prediction performances.
Table 2 illustrates our results, from which we draw the following two key insights.
GBC annotation leads to clear performance gains by encoding relational information. Table 2
demonstrates that training models with more detailed textual information, such as long captions or
region captions, consistently enhances downstream performance, particularly in retrieval tasks and
dense prediction. However, the most significant improvements are seen with GBC-captions, which
augment traditional region captions with relational and compositional descriptions. Given that the
GBC workflow is uniquely positioned to provide these, this result demonstrates the soundness of
GBC, capturing valuable insights not present in conventional captions.
How the captions are used matters. Compared to GBC-captions, the improvements achieved by
GBC-concat and GBC-graph on these benchmarks are of a smaller margin. This indicates that the
way GBC annotations is used significantly impacts performance. Specifically, this worse performance
is likely due to a mismatch between training and evaluation. For instance, the graph information
that would benefit GBC-graph most is not provided in any of these benchmarks. We address this
discrepancy below.

5.4 Evaluation on GBC test set

To assess the effectiveness of different annotation formats, we provide the model with these annota-
tions at test time. Annotations that better describe the images should, ideally, result in better retrieval
performance when they are used. Specifically, we use our own test set and consider performing
retrieval with the various types of annotations presented in Section 5.1. Note, however, that when
using region captions or GBC-captions, no single text embedding can naturally encompass all the
relevant information. To address this limitation, we perform retrieval based on the average CLIP
score between the image embedding and the text embeddings of the provided captions in this setup.
We report our results in Table 3, where the rows correspond to the annotations at training time and
the columns correspond to the annotation at test time. Unsurprisingly, we see a strong tendency that
when a model is trained with a certain annotation format, it performs the best when we use the same
format for retrieval. Among the few exceptions, we note that models trained to pair with shorter
captions may have better performance when concatenation of short captions is provided at test time.
This leads us to the following two observations.
Denser textual information improves retrieval performances. The table clearly shows that
training with richer annotations—such as long captions, GBC-concat, or GBC-graph—enhances
retrieval performance. This improvement suggests that these methods provide a more effective
representation of the images. Specifically, GBC-graph yields the best performance, indicating that
the proposed GBC format consists in a viable alternative to the commonly used detailed captions.
Simple augmentation during training does not allow to exploit additional information when
available. Our observations from Section 5.3 show that treating all captions as independent positives
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Annotation T2I I2T

Short 71.5 78.1
Long 72.9 80.1
GBC-captions 86.4 87.3
GBC-concat 73.3 79.7
GBC-graph 85.1 85.7

Table 4: Image and text retrieval per-
formance on GBC test when using
max CLIP score over all the captions.

Annotation
DCI-Long DCI-concat ShareGPT4V-15k

T2I I2T T2I I2T T2I I2T

Long 53.6 53.3 63.3 65.8 93.4 93.9
GBC-captions 42.5 43.3 64.3 63.8 78.7 82.1
GBC-concat 51.4 52.3 69.0 70.8 89.5 91.4

Table 5: Image and text retrieval performance on DCI and a 15k subset
of ShareGPT4V-cap100k of our models trained on longer captions.
We also include GBC-captions that by design can only handle short
captions as a baseline for comparison.

yields the best performance on existing benchmarks. However, there is no evidence that this method
could harness the richer information from multiple captions when they are provided together in test
time. Indeed, whether we use average CLIP score or concatenation, the retrieval performance of
these methods significantly lags behind those methods that are trained directly with captions that
individually encompass rich information.

5.5 Ablation studies

In addition to our main experiments, we have conducted extensive ablation studies on both the training
and evaluation of our models. We present two of them here and defer the remaining to Appendix F.

Retrieval with multiple captions using maximum CLIP score. An alternative to the mean CLIP
score we considered in Table 3 is to take the maximum, for which we report the results in Table 4.
Compared to taking the average, using the maximum is more robust to low CLIP scores, and thus
gives better results when the model is not trained to match the image with all local captions, as with
Short, Long caption, and GBC-concat. Nonetheless, despite these differences, the overall retrieval
performance still significantly lags behind that achieved using a single caption.

Retrieval with long captions. To complement the results presented in Table 2, we evaluate the
retrieval performance of our extended context models on datasets with dense annotations. We focus
specifically on ShareGPT4V [8], which offers GPT-style detailed captions closely resembling those
obtained from LLaVA, and DCI [61], containing human-annotated detailed and region captions. The
latter allows us to perform retrieval using either detailed captions or concatenated short captions, as
we did in Section 5.4. Our results shown in Table 5 demonstrates that the close caption distribution
with ShareGPT4V effectively enables strong retrieval results for models trained on our long captions.
However, potentially due to the distribution shift, all the models perform badly on DCI retrieval
with long captions. In this setup, using concatenated captions for training and retrieval significantly
outperformed other baselines, indicating the broader benefit of the concatenation approach.

6 Conclusion

We propose graph-based captioning (GBC) as a new image-text annotation format, and curated
GBC1M and GBC10M datasets. Grounding on CLIP model training, we propose various baseline
methods to utilize the GBC datasets. Via our experiments, we demonstrate that training with GBC
leads to improvements in various benchmarks compared to models derived from traditional annotation
formats. This suggests that GBC provides richer textual information than existing annotation schemes
and could hence be a valuable foundation for developing more advanced vision-langauge models
across various applications.
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A Related works, limitations, and societal impact

This appendix delves deeper into the broader context of our study, examines additional related works,
discusses the limitations of our methodologies, and explores its potential societal impacts.

A.1 Additional related works

In this section, we include works related to CLIP training.

CLIP with recaptioning. CLIP [50] is a seminal vision-language model that utilizes text and image
encoders to generate joint latent representations. While there is an extensive body of literature on CLIP
training—ranging from modifications in the objective [37, 70], data augmentation techniques [19, 40],
to training procedures [58, 72]—it is impossible to cover all developments comprehensively here.
Among these, particularly relevant to our work is the recent trend that highlights the benefits of
enhancing caption quality through dedicated models. For instance, VeCLIP [35] enriches image
alt-text with outputs from LLaVA, while similar recaptioning strategies have also been explored
by Doveh et al. [14], Nguyen et al. [45], and Vasu et al. [64]. On the other hand, LaCLIP [16]
employs LLaMA [60] to rewrite captions. Going further, SynthCLIP [24] leverages a dataset with
entirely generated captions and images for CLIP training.

CLIP with additional annotations. There has been a plethora of research on training CLIP models
with diverse annotations such as long captions, region captions, and scene graphs. As for long
captions, DreamLIP [74] proposes to sample sub-captions from the long description to construct
multiple positive pairs, while Long-CLIP [73] addresses CLIP’s 77-token limitation by modifying
the positional encoding to accommodate longer text sequences during fine-tuning. Meanwhile,
region annotations with varying granularity have been considered by works including GLIP [39],
X-VLM [71], and RegionCLIP [75]. Their objectives match features of image crops to their specific
descriptions. Efforts that aim to improve CLIP training with the help of scene graphs include
CLIP-SGVL [26] and Structure-CLIP [28]. The former integrates scene graphs to define additional
objective for image encoder, while the later uses scene graphs to guide the generation of negative
captions, and to enrich the text encoder with additional contextual information.

A.2 Limitations and perspectives

We discuss below the limitations of our works from three different perspectives, the procedure and
format, the datasets, and the experiments. These limitations also naturally point to several future
directions that are to be explored.

A.2.1 Limitation concerning the GBC procedure and format

While GBC remains a versatile high-level annotation format that in principle applies to any image,
its design is inherently tied to the coarse-to-fine and compositional nature of natural images. This
design orientation means that GBC is not necessarily the most suitable for certain types of images
such as scientific imagery, homogeneous patterns, or abstract art. Specifically, scientific imagery
often requires annotations that convey precise, quantifiable data rather than relational or descriptive
text. This limitation highlights the need for tailored approaches to different visual content categories
to address their unique characteristics.

A.2.2 Limitation concerning the GBC datasets

Our datasets are curated with the help of LLaVA and Yolo-World, and hence inherit their limitations.
This includes but is not limited to, the bias and hallucination from LLaVA captioning, incorrectly
identified objects from Yolo-World, and the inability of Yolo-World to recognize certain object
category (see Appendix C.3 for concrete examples). Moreover, our approach mainly distinguishes
between objects of the same type via composition nodes. Yet, we believe that there is a more effective
strategy than merely assigning numbers to these objects.

A.2.3 Limitation concerning our experiments

Our experiments, which focus on CLIP training and retrieval tasks, demonstrate the benefits of our
method and dataset from several perspectives. Nonetheless, we believe this only represents a small
part of what this new dataset and annotation method can offer. Moving forward, we commit to
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exploring broader applications, particularly in text-to-image and image-to-text problems, to fully
leverage our dataset’s potential.

A.3 Societal impact

Our paper introduces the GBC datasets and procedure, both aimed at advancing the development
of multimodal models. Specifically, the structured approach of GBC, designed to provide detailed
descriptions, may help overcome representational biases inherent in existing captioning pipelines,
offering more accurate descriptions of images. The potential benefits of these advancements extend
across a range of applications, such as assistive technologies and scientific research. However,
alongside these benefits, there are challenges including the potential spread of misinformation and
concerns about privacy. A comprehensive discussion of these broader societal impacts, both positive
and negative, extends beyond the immediate focus of our methodological study.

B Dataset construction

In this appendix, we provide all the missing details about our dataset construction process that are not
mentioned in Sections 3.2 and 3.3.

B.1 Query templates

To make the MLLM models fulfill the tasks described in Section 3.2, we perform COT prompting [66]
with few-shot examples. The four templates for our queries are shown in Figure 5 to 11. We make
the following remarks concerning the design of our prompts.

Prompt structure. We craft these prompts with the help of ChatGPT, which results in prompts that
might be more complicated than necessary. Meanwhile, we did notice that the inclusion of few-shot
examples is crucial for the model to adhere to the required output formats. Given that using always
the same few-shot examples might significantly bias the model’s output, it could be beneficial to
randomly retrieve examples from a diverse pool for each query, but we did not pursue this exploration.

[Single] and [Multiple] annotations. Since a detection model could output multiple candidate
bounding boxes for an input text, we ask the MLLM to annotate each identified element with
either [single] or [multiple]. We then proceed with slightly different algorithms in the two cases,
to encourage the selection of either only one, or multiple bounding boxes. In particular, we use
respectively an NMS threshold of 0.05 and 0.2 for objects labeled with [single] and [multiple].
However, these labels do not necessarily dictate the final count of bounding boxes; multiple boxes
may still be selected for items labeled [single], and vice versa.

Dynamically filled-in elements. To ensure that the response of the MLLM is relevant, the prompts
are dynamic and reflect the content of the current image (the image query being the only exception).
Such information comes from previous queries and can be naturally retrieved for different queries.
The only nonobvious part is the hard coded hints for composition queries, which we explain below.

Hard coded hints for composition queries. After numerous attempts, we observe that LLaVA-1.6
struggles with accurately describing the composition of multiple objects in a scene, even when
these objects are annotated with bounding boxes. To overcome this limitation, we guide the models
with hints generated programmatically using a set of predefined rules. Specifically, we begin by
constructing a Euclidean minimum spanning tree based on the centers of the bounding boxes. We
then select a random node as the root and perform a Depth-First Search (DFS) on the tree. During
this search, we interleave descriptions of the edges, which detail the geometric relations between
two objects based on the positions of their bounding boxes, with node descriptions. These node
descriptions are added when an object is located at a particular extremity of the composition, such as
the rightmost or top-left position.

B.2 Text classifiers

Both of our text classifiers are trained for binary classification using logistic loss. To determine
whether a piece of text is suitable for object detection, we utilize a single linear layer added on top
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of the Jina Embedding.5 For the task of assessing whether two texts can represent the same object,
we concatenate their Jina embeddings and process them through an MLP. This MLP includes layer
normalization, a hidden layer that expands the input dimensionality by a factor of four, followed
by SiLU activation and the final linear layer. The dataset for the training of our text classifiers are
prepared with the help of ChatGPT.

B.3 Other details for data annotation
We incorporate LLaVA-1.6 into our pipeline using llama.cpp.6 Moreover, to speed up the annotation
process, we utilize models quantized at different precision levels: the vision encoders at 6-bit
precision, the LLM component of LLaVA-1.6 Mistral-7B at 5-bit precision, and the LLM component
of LLaVA-1.6 Yi-34B at 3-bit precision.7 We use the default hyperparameters for inference except
for a temperature of 0.1 and context window of size of 5952 (note that LLaVA-1.6 can use up to 2880
image tokens). We discard any responses that do not comply with our required format.
As for the object detection model, we use YOLO-Worldv2-X trained with input resolution of
640× 640.8 We set the confidence threshold to 0.05 and retain a maximum of six bounding boxes for
each input text, selecting those with the highest confidence scores. We exclude any region whose size
is smaller than 5,000. To prevent repetitive descriptions of the same element, we keep only those
bounding boxes that occupy less than 80% of the current image region for detections arising from
entity queries. Regarding node merging, we consider two bounding boxes to be overlapping if their
intersection occupies more than 85% of the area of each bounding box involved.

B.4 Computation cost
We list below the major computation cost of our data preparation process.
• GBC1M: With our processing pipeline, it takes an average of around 3 minutes to annotate each

image on an A100 80G when all the queries are performed with LLaVA-1.6 Yi-34B. As a result,
annotating 1 million images took us around 6 days with 300 A100 80Gs.

• GBC12M: The average annotation time per image on an A100 80G is improved to 1 minute when
relation and entity queries are performed with LLaVA-1.6 Mistral-7B. This process is about twice
slower on a V100 32G. In this regard, our GBC12M dataset was compiled in roughly 6 days using
500 A100 80Gs and 1,000 V100 32Gs.

We also compute CLIP score for each caption using the DFN-5B model.9 This computation takes
around 3 hours for every 10,000 images on a V100 32G.

5https://huggingface.co/jinaai/jina-embeddings-v2-small-en Accessed: 2024-05-01
6https://github.com/ggerganov/llama.cpp Accessed: 2024-05-01
7https://huggingface.co/cmp-nct/llava-1.6-gguf Accessed: 2024-05-01
8https://huggingface.co/wondervictor/YOLO-World/blob/main/yolo_world_v2_x_

obj365v1_goldg_cc3mlite_pretrain-8698fbfa.pth Accessed: 2024-05-01
9https://huggingface.co/apple/DFN5B-CLIP-ViT-H-14-378 Accessed: 2024-05-01

18

https://huggingface.co/jinaai/jina-embeddings-v2-small-en
https://github.com/ggerganov/llama.cpp
https://huggingface.co/cmp-nct/llava-1.6-gguf
https://huggingface.co/wondervictor/YOLO-World/blob/main/yolo_world_v2_x_obj365v1_goldg_cc3mlite_pretrain-8698fbfa.pth
https://huggingface.co/wondervictor/YOLO-World/blob/main/yolo_world_v2_x_obj365v1_goldg_cc3mlite_pretrain-8698fbfa.pth
https://huggingface.co/apple/DFN5B-CLIP-ViT-H-14-378


Query Template for Image Query

System message

As an AI visual assistant, your role is to conduct an in-depth analysis of images and articulate a detailed account of the visible
elements. You must then distill this information into a precise and concise caption that accurately reflects the content of the image.

Step-by-Step Process:

Detailed Caption:
- Conduct a thorough examination of the image to note all elements present, including main subjects, minor objects, background
details, and any text.
- Prepare a detailed caption that accounts for all these elements, emphasizing the whole objects within the scene.

Top-Level Element Identification:
- Identify and format concrete objects: Begin by identifying concrete objects within the image that are detectable by object recognition
models. Each identified object should be formatted as [object_name][node_type] where [node_type] is either [single] or [multiple]:

- [single]: Applied to items that appear only once in the image, represented as a unique entity within its context, such as a
[cat][single] or a [chair][single]. This category is used regardless of the object’s size or location in the frame and is intended for items
that are not repeated elsewhere in the image. For example, a [stop sign][single] on a street corner or a [tree][single] in a field.

- [multiple]: Applied to items that are present more that once within the image, emphasizing their plurality. Examples include
[dogs][multiple] playing in a park, [chairs][multiple] in a café, [park benches][multiple] along a pathway, [girls][multiple] on a street,
[pillows][multiple] on a couch, [paintings][multiple] on a wall, and [lights][multiple] across a ceiling.
- Entire objects only: When identifying elements within an image, only include objects that stand alone as the main subjects. Avoid
breaking down the top-level objects into smaller components.
- Grouping similar items: When general items, such as houses, trees, players, or people, appear multiple times in the image, they
should be grouped together under a single [multiple] label rather than described separately. This approach applies even if these items
might have been described individually in the detailed caption.
- No abstraction: Do not include abstract qualities like colors (blue, red, white), patterns, or expressions.
- No numbering: Do not use any number to label objects. Just use [houses][multiple].
- No directional description: Do not use positional terms for individual elements. Instead, group similar items under a single [multiple]
label, like [cowboys][multiple].

Concise Formatted Caption:
- Use the identified elements to construct a concise formatted caption. Use brackets to denote each identified object, following the
[object_name][node_type] format. The object name should only appear in the bracket.
- Restrict the number of elements mentioned in the concise caption to avoid overcrowding and ensure clarity. Prioritize the inclusion
of key elements that define the scene or the subject’s essence.
- The concise caption should contain at most two sentences.

Example Adjustments:
- Character attributes: When analyzing an image featuring a person with distinctive attributes such as armor or tattoos, focus on the
person as a whole rather than the individual attributes. The correct annotation would be [person][single], encompassing all aspects of
the person appearance without breaking them down into separate elements.
- Architectural features: In the case of architectural elements, avoid itemizing components like the roof, windows, or door if they
contribute to the overall structure of a building. For a singular building in the image, use [house][single]. If the image depicts a
series of buildings, such as a row of houses with varying designs, annotate them collectively as [houses][multiple], regardless of their
individual features.
- Groups of similar objects: For scenes containing groups of similar objects or individuals, such as girls playing in a park, group them
under a single [multiple] label. Even if the individuals are engaged in different activities or have distinct appearances, they should be
annotated as [girls][multiple] to emphasize their collective presence within the scene. Similarly, even if multiple dogs or chairs have
different colors, they should be labeled as [dogs][multiple] and [chairs][multiples].

Figure 5: The system prompt used for image query (first half).
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Query Template for Image Query

System message (continued)

Example Captions:

For an image featuring multiple elements like a logo:

Detailed Caption: A design showcasing a prominent grey ’N’ at the top, with three smaller NEO Business Bank logos directly below
it, two colored squares positioned to the bottom left, and a line of text to the bottom right detailing the availability of various file
formats for the design. Top-Level Element Identification:
- [’N’][single]
- [Logos][multiple]
- [Squares][multiple]
- [Text][single]
Concise Formatted Caption: A design showcasing grey [’N’][single] positioned over NEO Business Bank [logos][multiple],
accompanied by colored [squares][multiple] and [text][single] at the bottom.

For an illustration of a zebra:

Detailed Caption: An animated zebra stands upright on two legs, waving in a welcoming manner, next to a wooden signpost at the
beginning of a dirt path. This path leads to a quaint wooden cabin with a thatched straw roof, surrounded by a simple wooden fence.
In the background, there’s another similar cabin. The scene is completed by a clear sky overhead and multiple trees dotting the
landscape, contributing to the lush greenery. Contextual Considerations: The zebra’s legs are part of its overall form and should not
be listed separately.
Top-Level Element Identification:
- [Zebra][single]
- [Signpost][single]
- [Dirt path][single]
- [Cabins][multiple]
- [Trees][multiple]
- [Sky][single]
Concise Formatted Caption: An animated [zebra][single] waves next to a wooden [signpost][single] on a [dirt path][single] that leads
towards wooden [cabins][multiple], with [trees][multiple] enhancing the lush greenery under a clear [sky][single].

For a photo of two men on street:

Detailed Caption: A photo of two men standing side by side on a city street. The man on the left has long hair and is wearing a beige
blazer over a white shirt with black trousers. He is smiling and looking directly at the camera. The man on the right has short hair
and is dressed in a gray blazer over a black shirt with gray trousers. He also smiles at the camera. They are standing on a sidewalk
lined with shops and buildings, suggesting they are in a commercial or urban area. The lighting suggests it might be late afternoon or
early evening. Contextual Considerations: The two men, despite their distinct appearances and attire, should be grouped together
under a single label since they both fall under the category of "men".
Top-Level Element Identification:
- [Two men][multiple]
- [Sidewalk][single]
- [Shops][multiple]
- [Buildings][multiple]
- [City street][single]
Concise Formatted Caption: [Two men][multiple] stand side by side on a [sidewalk][single] along a [city street][single], lined with
[shops][multiple] and [buildings][multiple], each dressed in coordinated blazers and trousers.

User message:
Following the instruction, please provide a detailed caption and a concise formatted caption for the given image. Note that it is crucial
for you to put elements that can be detected and should be further described in picture in brackets as [object_name][node_type] in the
concise formatted caption.

Figure 6: The system and user prompts used for image query (second half).
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Query Template for Entity Query

System message

Your task is to perform an in-depth analysis of a cropped image focusing on a requested object, like a "house". The process involves
a step-by-step evaluation to identify the object’s presence, describe its features, craft concise captions, and assess any prominent
objects.

Process Overview:

Verify Object Presence:
- Examine the image to determine if the specified object, or any instance of it, is present.
- State the presence with "Object Present: Yes" or "Object Present: No".

Provide Appropriate Caption (If Object Is Present):
- Provide a detailed description of the object, focusing solely on its features without reference to other elements in the image.
- The description should contain at most 50 words.

Assessment of Prominent Objects:
- Evaluate the described features to determine if any stand out for further description and are detectable by an object detection model.
This is crucial for complex objects such as ’man’, ’woman’, ’family’, ’couple’, ’cat’, or ’house’, where components or distinctive
attributes are significant. For example, when analyzing ’woman’, consider elements like dress [single], skirt [single], or hair [single]
as prominent features. For simpler objects like ’cup’ or ’chair’, additional descriptions may not be needed.

Identification of Prominent Features (If Applicable):
- If there are prominent features identified, list and format these features for potential detection by an object detection model.
- Ensure these features are parts or components of the main object and not the entire object itself.
- Use [single] for unique, standalone items, and [multiple] for features present more than once, such as roof [single] or windows
[multiple].
- Group similar items under a single [multiple] label rather than describing them separately, even if individual descriptions were
provided in the detailed caption. For example, multiple distinct windows in a house should be labeled as windows [multiple] rather
than individually enumerated.
- For groups like families or couples, identify members separately (e.g., man [single], woman [single]) rather than as a collective unit.
This contrasts with grouping similar inanimate objects (e.g., windows [multiple]), where individual distinction isn’t necessary.
- Consistency with the caption: Ensure that the features identified as [single] or [multiple] are also mentioned in the caption.

Example Responses:

Example 1: Object Not Present

Object Presence: No
Detailed Caption: N/A
Prominent Features: N/A
Identification of Prominent Features: N/A

Example 2: Object Present Without Prominent Features (requested object: "cup")

Object Presence: Yes
Detailed Caption: A simple ceramic cup on a wooden table. The cup has a smooth, unadorned surface and a standard curved handle
on one side.
Prominent Features: No
Identification of Prominent Features: N/A

Figure 7: The system prompt used for entity query (first half).
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Query Template for Entity Query

System message (continued)

Example 3: Object Present With Prominent Features (requested object: "family")

Object Presence: Yes
Detailed Caption: A family of four is captured enjoying a sunny day in the park. The father, in casual
attire, is engrossed in setting up a picnic spot, while the mother, donned in a summer dress, is laying out
a feast on a blanket. Nearby, two children, a boy and a girl, engage in playful antics; the boy is kicking
a football with fervor, and the girl, adorned in a light frock, is gleefully chasing bubbles.
Prominent Features: Yes
Identification of Prominent Features:
- Father: [single]
- Mother: [single]
- Boy: [single]
- Girl: [single]

Example 4: Object Present With Prominent Features (requested object: "car")

Object Presence: Yes
Detailed Caption: A vintage car in pristine condition, with shiny chrome bumpers and classic spoke
wheels. The car’s body is painted in a vibrant red, and the leather interior is visible through the clear
windows. A unique hood ornament adorns the front, adding to the car’s elegance.
Prominent Features: Yes
Identification of Prominent Features:
- Chrome bumpers: [single]
- Wheels: [multiple]
- Hood ornament: [single]

User message:

Please assess the image focusing on ’{}’. Start by confirming its presence with ’Object Present: Yes’ or
’Object Present: No’. If present, describe its key features in a detailed caption with at most 50 words.
Then, evaluate if any aspects stand out for further emphasis, stating ’Prominent Features: Yes’ or ’No’
while preferring "Yes". If yes, list a few notable features in brackets, applying [single] or [multiple] as
appropriate. Importantly, do not include ’{}’ in features. Instead, you should break it down.

Example filled-in elements

• boat

• boat

Figure 8: The system and user prompts used for entity query (second half). The placeholders ‘{}’ are
dynamically filled with the name of the object, i.e., the label of the associated incoming edge.
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Query Template for Composition Query

System message

Your role is to analyze images containing objects within pre-labeled bounding boxes and describe the compositional arrangement of
these objects based on provided hints. You will then provide general descriptions that apply to all the objects collectively.

Input Image Format Explanation:
- The image will feature objects of interest, each enclosed within a bounding box.
- Each bounding box will be numbered centrally to uniquely identify it.
- The objects will be similar in nature (e.g., all dogs) and positioned within a scene.

Utilizing Hints for Analyzing Composition:
- Begin by reviewing the hints provided regarding the spatial arrangement of the objects.
- These hints may specify the relative positions of objects (e.g., "Object 3 is in the top right corner").
- Use the hints to guide your description of how the objects relate to each other within their bounding boxes.

Output Format:
- Composition Description: Start with "Composition:" followed by a description informed by the hints and using the bounding box
numbers. This description should elucidate the spatial arrangement of the objects as per the hints.
- General Descriptions: Provide observations that apply to all objects within the specified group, excluding unrelated elements or
background details. Preface this section with "General descriptions:".

Additional Guidelines:
- Describe the spatial arrangement of objects without inferring spatial relations from the sequence of numbers.
- Utilize clear spatial language to articulate the composition.
- The description should reflect the actual visual composition, not the order of numbers in the bounding boxes.

Examples:

Example for 3 Dogs in Bounding Boxes:

Query Prompt: "Please describe the composition of the 3 dogs in the bounding boxes, followed by some general descriptions that
apply to all dogs."

System Response:

Composition: Dog 3 is in front, with dog 2 to the left and dog 1 to the right.
General descriptions:
- The three dogs are aligned in a row on the grass.
- They share similar sizes and features, suggesting they may be from the same breed.

Additional Examples:

For 5 Flowers in a Garden Bed in Bounding Boxes:
Composition: Flower 4 takes a central position, flanked by flower 2 and flower 3 on either side, while flower 1 and flower 5 bookend
the arrangement at the outer edges.
General descriptions:
- Each flower is in full bloom, indicating a peak growing season.

For 2 Cats in a Window in Bounding Boxes:
Composition: Cat 1 is positioned on the left side of the window sill, while cat 2 is curled up on the right.
General descriptions:
- Both cats are basking in the sunlight coming through the window.
- Their relaxed postures suggest a shared sense of comfort and tranquility.

Figure 9: The system prompt used for composition query.
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Query Template for Composition Query

User message:

Please describe the composition of the {} in the bounding boxes, followed by some general descriptions
that apply to all {}. The composition should include {} and be based on the following hints (do not
mention hints or bounding boxes in the response).
{}

Example filled-in elements

• boats

• boats

• boat 2, boat 3, boat 1

• - boat 2 is on the right side of the composition
- boat 2 is to the right of boat 3
- boat 3 is to the right of boat 1
- boat 1 is on the left side of the composition

Figure 10: The user prompt used for composition query. The placeholders ‘{}’ are dynamically filled with the
name of the object, the labels of the out edges (in the form of the name of the object plus number), and hard
coded hints that are obtained using the positions of the bounding boxes.
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Query Template for Relation Query

System message

Your role involves analyzing the spatial and direct interactions between pre-identified elements within an image, described through
annotations like [beach], [turquoise waters], [people], [shoreline], [lush vegetation]. Your task is to objectively describe how these
elements are related or positioned relative to each other within the scene.

Steps for Identifying Objective Relations:
1. Review Annotated Elements: Start by examining the list of annotated elements. Understand the nature of each element as it is
presented in the image.
2. Identify Spatial Positions: Determine the spatial positioning of these elements in relation to each other. Focus on direct relationships
such as touching, overlapping, or proximity without implying any further interpretation.
3. Describe Direct Interactions: Look for and describe any direct interactions between elements, such as one element supporting
another, blocking, or leading into another.
4. Format Relations List: Provide your findings as a list of bullet points. Each bullet should detail a direct and observable relationship
between two or more elements, using their annotated identifiers for reference.

Example Relations Based on Annotated Elements:

For elements: [beach], [turquoise waters], [people], [shoreline], [lush vegetation], you might reply:

- The [people] are standing on the [beach], with the [lush vegetation] to their left.
- [Turquoise waters] lap against the [beach] at the [shoreline], with [people] scattered along its edge.
- [Lush vegetation] flanks the left side of the [beach], providing a natural border.
- The [shoreline] separates the [beach] from the [turquoise waters].
- To the right of the [lush vegetation], the [beach] stretches towards the [turquoise waters].

For another set of elements: [eagle], [snake], [wings], you might reply:

- The [eagle] has its [wings] spread above the [snake].
- The [snake] is positioned below the [eagle].
- The [eagle]’s claws are near or in contact with the [snake].

Guidelines for Reporting Relations:
1. Ensure descriptions are based solely on visible or directly inferable relationships without adding interpretations or assumptions.
2. Maintain clarity and precision in articulating the spatial and interactional dynamics between elements.
3. Stick to objective descriptions that reflect the physical and observable aspects of the elements’ relationships.
4. Only answer the list of bullet points without anything before or after.
5. Do not include any bullet point with 1 or even 0 elements.

- Visible Relationships Only: Report relationships that are clearly depicted in the image. If no clear relationships are visible, state
"No visible relationships."
- Objective Descriptions: Keep descriptions factual and based solely on what can be seen in the image.
- Avoid Assumptions: Do not infer or assume any relationships that aren’t clearly shown in the image.
- Bullet Point Format: Present each observable relationship as a separate bullet point, avoiding any descriptive text not related to the
direct relationships.
- No Relation Inference: Refrain from implying relationships or positions that are not explicitly shown. If elements are simply present
without any discernible interaction, it is acceptable to say "Elements are present without visible interaction."
- Avoid Single Element Points: Do not include bullet points that mention only one element or have no elements at all. Each bullet
point must reference the relationship between two or more elements.

User message:

Please infer and list of at most {} relations between {} in this images.

Example filled-in elements:
• 4

• eiffel tower, sky, trees, boat, water

Figure 11: The system and user prompts used for relation query. The placeholders ‘{}’ are dynamically filled
with a random number between 2 and the number of involved objects, and the names of these objects.
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C Dataset information

In this appendix, we provide information about dataset release, dataset statistics, and visualizations
of a few examples from our GBC10M dataset.

C.1 Data release and licensing

Our datasets are available at https://huggingface.co/graph-based-captions, released under
the Apple Sample Code License.10 Following CC12M, we include URLs to images along with
captions generated through our GBC procedure, all stored in JSON lines format. Comprehensive
documentation including a dataset card and croissant metadata is provided in the data repository. We
are committed to maintaining the dataset to ensure its long-term public accessibility.

Personal identifiable information and offensive content. Our dataset comprises only captions
generated by MLLM models (LLaVA 1.6 Yi-34B and LLaVA 1.6 Mistral-7B), which were trained on
carefully curated data. The images, sourced from CC12M, are generally free from offensive content.
In particular, CC12M is the result of a filtering operation involving adult content detection on images
and their captions. While CC12M images may include human faces, we do not host the images
directly; only the URLs are provided. Additionally, we conduct toxicity check with Detoxify [25]
on a subset of examples in GBC dataset and find no harmful contents. While it was not possible to
manually examine all the samples produced by GBC pipeline, we believe that the protective measures
of the source dataset and model are sufficient to avoid both harmful content, and privacy leakages.

Author statement. We, the authors, accept full responsibility for any violation of rights.

C.2 Dataset statistics

In this section, we provide statistical insights into the GBC1M and GBC10M datasets. In particular,
we zoom in on the statistics at image, vertex, edge, and caption levels, and present distributions of
several key metrics including for example caption length, region size, and CLIP score. Since most of
these metrics exhibit long-tailed distributions, we often group excessively large values into a single
histogram bin for better visualization.

C.2.1 Image and graph statistics

We first look at the sizes of the images and of the annotation graphs, i.e., the numbers of vertices and
edges in these graphs and their diameters (which is measured as the length of the longest path in a
directed graph). The distributions of these metrics are shown in Figures 12 and 13. We see that the
image size has a very long-tailed distribution, with the majority of images having around 786× 786
pixels. Conversely, the distributions of graph diameters are more similar to that of a Poisson or a
binomial distribution, with most of the graphs having a diameter between 3 and 6. Finally, as one
could expect, the numbers of vertices and edges share quite similar distributions.
While we expect the size of a graph to reflect the inherent complexity of an image, we acknowledge
that our annotations are influenced by the biases of the used models. In particular, we observe that our
annotation process tends to yield larger graph for natural images compared to other types of images
such as artworks or graphic designs.

C.2.2 Vertex statistics

We have shown previously that our datasets contain an average of 12 vertices per graph. This
translates to 11 regions per image after excluding the root node that represents the entire image. We
compare this number with several other vision-language datasets with region-based annotations in
Table 6. As one can see, this number aligns well with many of these datasets, particularly those used
for detection, such as COCO and Object365. However, it lags behind compared to Visual Genome
and more recent datasets with dense annotations, such as AS-1B and DCI. We believe this discrepancy
can be attributed to both the top-down design of our annotation process, which tends to overlook less
significant components of the images, and the limitations of the detection model used. Notably, both
AS-1B and DCI utilize Segment Anything [32] to identify regions of interest. Segment Anything is

10Should we receive the necessary approvals, we may transition to a less restrictive license in the future.
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Figure 12: Distributions of metrics at image and graph level in the GBC1M Dataset.
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Figure 13: Distributions of metrics at image and graph level in the GBC10M Dataset.
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Dataset # Images # Regions / Image

COCO [41] 123,000 7
Visual Genome [33] 108, 249 42
Objects365 [55] 638,000 16
Open Images [34] 1.7M 8
BigDetection [5] 3.5M 10
SA-1B [32] 11M 100
AS-1B [65] 11M 110
DCI [14] 7,805 40
GBC1M (ours) 1.1M 11
GBC10M (ours) 10.1M 11

Table 6: Comparison of number of regions per image among several vision-language datasets with region-based
annotations. We use the statistics reported in the original paper although some datasets, such as COCO and Open
Images have been updated after their initial release. Moreover, for Open Images we report the number for the
training set with bounding box annotation [34, Tab. 5]. For DCI, we compute the average number of regions per
image ourselves using their open-sourced dataset with 7,805 images as this number is not reported in [14].

trained on SA-1B, which has much denser annotations compared to the object detection datasets used
for training Yolo-World.
We next examine how this number is distributed across the different types of nodes that are present in
our graphs. For this, we plot the distributions of the numbers of composition nodes, relation nodes,
entity nodes, and leaves (i.e., the nodes without any children) in Figures 14 and 15. As seen in the
figures, a large number of vertices are entity nodes, which focus on describing a single object. In
spite of this, we still have an average number of 4 vertices per graph that are dedicated to describing
the composition or relationships between multiple objects.
To complete our investigation, we visualize the distributions of the sizes of the vertices’ bounding
boxes in Figures 16 and 17. We note that most of the regions have small relative size (smaller
than 0.1). This is also observed in other datasets such as Visual Genome [33, Fig. 15] and Open
Images [34, Fig. 20]. Relation nodes, whose bounding boxes are defined as the minimum bounding
box containing the union of all the involved objects’ bounding boxes, have sizes that spread more
uniformly across different ratios. We also observe a large number of entity nodes with bounding
boxes that have a relative size close to 1. This likely corresponds to background objects that spans
across the entire image, such as “sky” or “grass”.

C.2.3 Edge statistics

Our datasets feature an average of 22 edges per graph. We analyze the origins of these edges in
Figure 18, which shows their distributions across different types of source vertices. The figure
indicates that the image node is responsible for a large proportion of these edges, suggesting that
many of the entities that we identify directly come from the image caption. This is natural provided
that an image often contains many objects, while it is less common to need further decomposition of
a single object for detailed description. Besides this, these figures also indicate the number of entities
that are involved in our composition and relation descriptions. Notably, we see that most of these
descriptions only contain 2 or 3 objects, with few of them involving more than 4 objects. In contrast,
we observe a relatively large number of entity nodes with 4 outgoing edges, and we believe this can
be attributed to the bias caused by the few-shot examples provided in our query template.
We also provide analysis for the edge labels. These edge labels should represent the objects that are
associated to their respective target vertices. In particular, during our annotation process, we use these
labels as input of the detection model to obtain the bounding boxes of the entity nodes. In Figures 21
and 23, we plot the distributions of the numbers of words and tokens contained in the edge labels. As
expected, most of the time we use only 1 or 2 words to represent the entities.
We next study the content of these labels. To this end, we plot the distribution of (i) the 20 most
common edge labels at the in-edges of the entity nodes, reflecting the content of these entity nodes,
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Figure 14: Distributions of vertex numbers across different types of vertices in the GBC1M Dataset.
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Figure 15: Distributions of vertex numbers across different types of vertices in the GBC10M Dataset.
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Figure 16: Distribution of bounding box sizes in the GBC1M Dataset. We show both the absolute size (number
of pixels) and the relative size (normalized by image size).
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Figure 17: Distribution of bounding box sizes in the GBC10M Dataset. We show both the absolute size (number
of pixels) and the relative size (normalized by image size).
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Figure 18: Distributions of number of outgoing edges across different types of vertices in the GBC1M (left) and
GBC10M (right) datasets.
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Figure 19: Distributions of DFN-5B CLIP scores across different types of captions in the GBC1M (left) and
GBC10M (right) datasets.
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Figure 20: Distributions of the 20 most common in-edge labels and in-/out-edge label pairs at entity nodes in
the GBC1M dataset. We remove numbers from the edge labels for the computation of their occurrences in these
plots.

1 2 3 4 5 6-190.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Co
un

ts

1e7

Mean: 1.40

Number of Words per Edge Text

3 4 5 6-290.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Co
un

ts

1e7

Mean: 3.51

Number of Tokens per Edge Text

Figure 21: Distributions of numbers of words/tokens in each edge label in the GBC1M dataset. To compute the
number of tokens we use the standard CLIP tokenizer.
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Figure 22: Distributions of the 20 most common in-edge labels and in-/out-edge label pairs at entity nodes in
the GBC10M dataset. We remove numbers from the edge labels for the computation of their occurrences in
these plots.
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Figure 23: Distributions of numbers of words/tokens in each edge label in the GBC1M dataset. To compute the
number of tokens we use the standard CLIP tokenizer.
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Figure 24: Distributions of numbers of captions, words, and tokens per image in the GBC1M Dataset.
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Figure 25: Distributions of numbers of captions, words, and tokens per image in the GBC10M Dataset.

and (ii) the 20 most common edge label pairs when pairing the in- and out-edges of the entity
node, reflecting the situation where we zoom in on an object to further describe a part of it. The
corresponding histograms are presented in Figures 20 and 22. From these plots, we see that the
most common objects from our datasets are “tree”, “sky”, “man”, “woman”, “table”, and “building”,
among others. This distribution aligns well with the ones reported for existing datasets, cf. [33, Fig.
22] and [34, Tab. 11]. Furthermore, while the occurrence of certain labels and label pairs, such as
(“woman”, “hair”), may be influenced by our system prompts, others like (“bed”, “pillows”) are
widely present despite not being included in our prompts. This suggests potential biases in either the
model or the dataset itself.

C.2.4 Caption statistics

For statistics at the caption level, we first complete Table 1 and Figure 3 by providing distribution of
CLIP scores on the two datasets in Figure 19, and distribution of number of captions, words, and
tokens per image in Figures 24 and 25. In particular, the significant variation in CLIP score distribu-
tions across different caption types motivates our decision to perform CLIP-filtering independently
for each type, as mentioned in Section 5.2.
Going further, we report the average number of words and tokens per caption across different types of
captions in Figure 27, 29, and Table 7. We can see that except for the detailed image captions, most
captions indeed contain fewer than 77 tokens. Table 7 additionally reveals that we have near 2.5 times
more region captions (i.e., entity and multi-entity captions) than the total of relation and composition
captions. However, as we have seen in Section 5.3 and will further ablate in Appendix F.3, these
relation and composition captions, unique to our dataset, are crucial for the performance improvement
that we observe across different evaluations.
We conclude this part by showing the distribution of the 20 most common words and trigrams that
appear in our captions, with stop words removed when considering the word distributions. The
frequent appearances of colors among the top words again align with the distribution reported in
Visual Genome [33, Fig. 24]. In addition, phrases like “appears to be”, “possibly”, and “the image
captures” that commonly appear in our data, reflect LLaVA’s use of GPT-generated data during
instruction tuning.

C.3 Examples from GBC10M

As a complement to the dataset statistics presented in the previous section, we showcase a few
illustrative examples from GBC10M in Figures 30 and 31. These examples demonstrate the varying
levels of graph complexity across our dataset. The number of nodes varies from just a few (first
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Figure 26: Distributions of the 20 most common words and trigrams that appear in the captions of the GBC1M
dataset.
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Figure 27: Distributions of numbers of words/tokens across different types of captions in the GBC1M dataset.
To compute the number of tokens we use the standard CLIP tokenizer.
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Figure 28: Distributions of the 20 most common words and trigrams that appear in the captions of the GBC10M
dataset.
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Figure 29: Distributions of numbers of words/tokens across different types of captions in the GBC10M dataset.
To compute the number of tokens we use the standard CLIP tokenizer.
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Caption Type # Captions # Words / Caption # Tokens / Caption CLIP score

GBC1M

Image Original
1,013,592

17.4 24.5 0.36
Image Short 28.1 35.3 0.33
Image Detail 110.3 130.9 0.26

Entity 7,512,638 37.5 46.3 0.29

Composition 1,117,935 35.8 44.1 0.23
Multi-Entity 3,487,562 17.8 23.1 0.25

Relation 3,493,543 22.0 27.2 0.30

GBC10M

Image Original
10,138,757

17.4 24.6 0.36
Image Short 28.1 35.3 0.33
Image Detail 110.3 130.9 0.26

Entity 74,354,424 33.9 42.1 0.28

Composition 11,621,125 36.2 44.5 0.22
Multi-Entity 36,359,826 17.9 23.2 0.24

Relation 36,606,028 11.5 15.3 0.28

Table 7: Key caption statistics of the GBC1M and GBC10M datasets across different types of captions. We use
the DFN-5B CLIP model to compute the CLIP scores.

example in Figure 30) to over 10 (third example in Figure 30 and the example in Figure 31). In most
cases, this complexity aligns with the visual complexity of the corresponding image.
On the other hand, these examples also reveal limitations arising from the object detection models
used. For instance, in the Messe example from Figure 30, the detection model incorrectly identifies a
standing priest as a “kneeling figure”. Similarly, in Figure 31, two of the three nodes labeled “trunk”
are derived from tree nodes and erroneously associated with the elephant’s trunk or other non-trunk
objects on the elephant. These limitations become particularly severe in the Regalia example of
Figure 30, where the presence of more specific objects like crowns, scepters, bracelets, and earrings
leads to frequent confusion by the object detection model.
Next, we focus on the captions associated with these images. A subset of these captions is presented
in Tables 8 and 9. We observe that hallucination is particularly important for detailed captions.
These erroneous descriptions can then be inherited by the shorter captions derived from them. We
also note there are situations where the model describes an object that actually does not exist in the
corresponding region of the image, such as the caption for “scepter 1” in the Regalia example. As
we can see from the figure, in the corresponding bounding box, there is no scepter visible but only a
crown on a wooden base.
In spite of these inaccuracies in object detection and captioning, the overall graph structure and
captions still align well with the images. On top of this, the granularity of our descriptions significantly
enhances the descriptive power of our dataset, allowing for a more nuanced understanding of the
visual content.
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Flame:

Messe:

Regalia:

Figure 30: Example images and graphs from the GBC10M dataset. For ease of visualization we only show the
bounding boxes of a few nodes.
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Elephant:

Figure 31: An example image with its associated graph from the GBC10M dataset. For ease of visualization we
only show the bounding boxes of a few nodes.
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Short
Captions

Flame [Figure 30]. A flame with yellow base and blue peak emerges from a
metal object against a dark background.
Messe [Figure 30]. A priest holds a chalice aloft while another figure kneeling
figure kneels on the floor, set against a backdrop of architectural details and
ornamentation within what appears to be a religious setting.
Regalia [Figure 30]. Two people stand behind a display case containing a crown,
scepter with a blue gem, and a golden orb with a red gem, all under natural light
from a window or glass panel within an indoor setting.
Elephant [Figure 31]. A man rides atop a bench strapped on a elephant drinking
from a riverbank, surrounded by trees under a clear sky.

Detailed
Captions

Flame [Figure 30]. The image captures a close-up view of a blue flame emanating
from a small metal object, which appears to be a lighter or torch. The flame has
a vibrant yellow hue at its base, transitioning to a bright blue at its peak. The
flame’s shape is irregular with wisps extending outward from its core, suggesting
it’s in motion or has been recently ignited. The metal object has a cylindrical
shape with a pointed tip from which the flame emerges. The background is dark,
providing a stark contrast that accentuates the flame’s colors and form.
Messe [Figure 30]. The image portrays a religious scene set within what appears
to be a church or chapel. At the center of the composition stands a priest, dressed
in traditional religious attire with a red robe and a white cowl. He holds a golden
chalice aloft with both hands, suggesting he may be performing a sacrament or
ritual. To his right, another figure, possibly another priest or religious figure,
kneels on the floor, seemingly in prayer or reverence. The background features
ornate architectural details, including arches and intricate patterns on the walls,
indicative of Gothic or similar architectural styles. The overall atmosphere
suggests a solemn or sacred moment within a religious ceremony or service.
Regalia [Figure 30]. The image captures a scene where two individuals are
standing behind a display case containing various items. The display case houses
a collection of ornate jewelry pieces, including a crown with intricate detailing,
a scepter with a blue gem at its top, and a golden orb with a red gem. The
individuals are dressed in pink shirts and are positioned behind the display case,
which has a reflective surface. The background suggests an indoor setting with a
window or glass panel allowing natural light to illuminate the scene.
Elephant [Figure 31]. The image captures a serene scene at a riverbank where
a man is riding on the back of a large elephant. The elephant, with its majestic
gray skin, is partially submerged in the water, drinking from it. The man, dressed
in casual attire, sits comfortably on a wooden bench strapped securely on the
elephant’s back. The bench is adorned with colorful cushions for added comfort
during the ride. The backdrop features lush greenery with trees lining the river-
bank, adding to the tranquil atmosphere of the scene. The overall setting suggests
a peaceful interaction between humans and nature.

Table 8: Corresponding synthetic detailed and short captions for the examples shown in Figures 30 and 31. We
highlight the objects described in the children nodes in dark blue and mark some erroneous descriptions in italic.
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Entity
Captions

Flame—flame [Figure 30]. A bright yellow flame emanates from a blue lighter.
The flame is intense and vibrant, with a distinct orange hue at the center. It
appears to be burning steadily, casting a warm glow.
Messe—priest [Figure 30]. A priest dressed in traditional religious attire, which
includes a red robe with gold trim, a white cassock, and a red sash. He holds a
cross in his right hand.
Regalia—scepter 1 [Figure 30]. A gold scepter with a cross atop it. The scepter
has intricate designs and patterns throughout its length.
Elephant—elephant [Figure 31]. A large elephant with a long trunk is seen
walking through a body of water. Its skin appears rough and wrinkled, typical of
elephants. The elephant has small tusks and large ears that are characteristic of
this species.

Relation
Captions

Flame—flame/metal object [Figure 30]. The flame is positioned above the
metal object.
Messe–priest/kneeling figure [Figure 30]. The priest is standing in front of the
kneeling figure.
Regalia—crown/scepter [Figure 30]. The scepter is positioned next to the
crown.
Elephant—elephant/riverbank/trees [Figure 31]. The elephant is standing
near the riverbank with trees in the background.

Composition
Captions

Messe–kneeling figure [Figure 30]. Kneeling figure 1, positioned at the top
right, appears to be in a state of prayer or reverence, while kneeling figure 2,
located at the bottom left, seems to be in a similar posture, possibly indicating a
shared moment of devotion or reflection.
Regalia—scepter [Figure 30]. Scepter 2, which is in the bottom left corner, has
a golden handle with a blue gemstone at its center, while scepter 1, positioned
above scepter 2, features a golden handle with a red gemstone at its center. Both
scepters are ornate, with intricate designs and a regal appearance.
Elephant—riverbank [Figure 31]. Riverbank 1 is positioned above Riverbank
2, with Riverbank 2 located at the bottom of the composition.

Multi-Entity
Captions

Messe–kneeling figure [Figure 30]. Both figures are depicted in a posture
commonly associated with prayer or worship, suggesting a religious or spiritual
context for their actions.
Regalia—scepter [Figure 30]. The gemstones in their handles add a touch of
elegance and value to each scepter.
Elephant—riverbank [Figure 31]. They are situated near a body of water,
which suggests a peaceful, natural setting.

Table 9: Some example relational and region captions for the examples shown in Figures 30 and 31. We
highlight the objects described in the children nodes in dark blue and mark some erroneous descriptions in italic.
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D Algorithm details

This appendix provides missing details about our architecture and training objective.

D.1 Structure-aware cross attention

We define below mathematically the SACA layer. For this, we denote by NC the children of
caption C in caption graph GC and write the features of C in the input of our SACA layer as
XC = [xC

1 , . . . , x
C
nC ]. Recall also that Pe with e = (C,C ′) represents the set of token positions in

the source caption C that we map the edge label Le to. Then, the SACA layer maps each feature
vector xC

i to

SACA(xC
i ) =

∑
C′∈NC 1i∈P(C,C′) MHA(xC

i , X
C′
, XC′

)

min(1,
∑

C′∈NC 1i∈P(C,C′))
, (1)

where MHA implements the standard multi-head attention mechanism. Note that we average across
the results from all the relevant captions that describe this token, as we show in Figure 4.
As a side note, we highlight that with SAHA, information is only propagated from each node to its
direct parent within a block. Consequently, the number of blocks must exceed the depth of the GC to
ensure that information reaches the root node from all levels of the graph.

D.2 Multi-positive contrastive loss

To pair multiple positive captions to an image, we extend standard contrastive loss [50] into multiple-
positive contrastive loss, as also considered in prior studies [14, 16]. Specifically, consider a batch
of N images {Ii}Ni=1, where each image Ii is associated with Mi captions {Ti,j}Mi

j=1, we utilize the
following loss function to account for multiple positive texts per image:

LI = − 1

Z

N∑
i=1

Mi∑
j=1

log
S(Ii, Ti,j)

S(Ii, Ti,j) +
∑N

k=1,k ̸=i

∑Mk

l=1 S(Ii, Tk,l)
, (2)

where S(I, T ) = exp(cos(I, T )/τ), τ is a learnable temperature parameter, and Z =
∑N

i=1 Mi is a
normalizer. On the other hand, each caption still only has one paired image. Therefore, we use the
standard contrastive loss on for text-to-image alignment:

LT = − 1

Z

N∑
i=1

Mi∑
j=1

log
S(Ii, Ti,j)∑N

k=1 S(Ik, Ti,j)
. (3)

E Experimental details

This appendix presents further details about our experiments that are omitted in Section 5.

E.1 Data filtering

For the computation of CLIP score, we split any caption that contains more than 77 tokens into
individual sentences, compute the score for each of these sentences, and compute the average of these
scores. Then, we start by filtering out images whose short synthetic captions have CLIP scores that
are lower than the 5% quantile. After this, we consider three filtering strategies depending on the
annotation formats.

Long caption. In this case, we just further filter out a portion of original captions and long captions
with the lowest CLIP scores (by considering the 5% quantiles from the non-filtered dataset).

GBC. Naive CLIP filtering and tokenizer truncation could break the graph structure as some of
the edge labels would not appear in the captions of its source node anymore after these operations.
We address this issue by filtering out the captions following the reverse of a topological ordering of
the graph, drop a node along with its in edges when all its captions and children get filtered, and
otherwise, if necessary, add bag-of-words captions that collects edge labels from the remaining out
edges of a node to ensure all these labels still appear in some captions of this node. Moreover, we
split the captions whose length are longer than 77 tokens into concatenations of sentences that fit
within this limit, and drop any caption which contains sentences that are of more than 77 tokens.
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Hyperparameters Values

Data augmentation RRC
Crop size 224×224
Train iterations 45k
Global batch size 4,096
Optimizer AdamW
Min / max learning rate {1e-6, 1e-3}
LR. decay schedule type Cosine
Warmup iterations 1,000
Weight decay rate 0.05
EMA factor 0.9995

Table 10: Hyperparameters for CLIP model training.
RRC stands for RandomResizedCrop

Hyperparameters Values

Data augmentation RRC
Crop size 512×512
Train iterations 160k
Global batch size 16
Optimizer AdamW

Peak learning rate [5e-4, 2e-4,
1e-4, 7e-5, 5e-5]

LR. decay schedule type Polynomial
Warmup iterations 1,500
Weight decay rate 0.01

Table 11: Training hyperparameters for semantic
segmentation experiments on ADE20k. RRC stands
for RandomResizedCrop.

Short Long Region GBC-captions GBC-concat GBC-graph

Training time (hr) 22.7 19.7 29.9 38.9 20.3 43.0

Table 12: CLIP model training time for 45,000 iterations with different annotation formats.

Short and Region. We follow the strategy mentioned in GBC, but use selected types of captions.
Moreover, bag-of-words captions are not used.
We remark that the filtering procedure is only applied to the training set, and not the GBC test set.

E.2 Dynamic batch size

Given the varying sizes of our graph, setting a fixed number of images per batch could result in
out-of-memory errors unless we opt for a conservatively small batch size. To overcome this challenge,
we implement a dynamic batching strategy for the setups where the number of captions per image is
in principle unbounded. This encompasses notably region, GBC-captions, and GBC-graph. With this
strategy, we ensure that the number of captions, and, in the case of GBC-graph, the number of edges,
that are included in each batch do not exceed a certain limit. In this regard, the batch size that we
report in Section 5 is actually just an upper bound on the number of images included in each batch.
More specifically, we set this limit based on the number of average captions/edges per image in the
filtered dataset. For example, for GBC-captions and GBC-graph we have in average 17.61 captions
per graph. We thus set the limit on caption number to 18× 64 = 1152 on each GPU (as mentioned
in Appx. E.4, we use 64 GPUs for most of our experiments, which gives a batch size of 64 per GPU).

E.3 Hyperparameters for CLIP training

We used a consistent set of hyperparameters for all model training runs, as detailed in Table 10. The
sole exception is training with original CC12M captions, where we used a larger batch size of 8,192
to ensure the model sees a comparable number of texts as during training with both short synthetic
and original captions. For this specific setup with the larger batch size, we reported evaluation results
from the EMA checkpoint at the end of epoch 15, for it achieving the best performance among the
evaluated checkpoints. For GBC-graph, we drop the edges with probability 0.5 so that the model also
learns how to match images with short captions.

E.4 Computation cost

We train all CLIP models on A100-80G GPUs. As training with different annotation formats requires
varying size of GPU memory, we use different total numbers of GPUs to ensure the same batch size.
Specifically, we utilize 16 GPUs for training with Short captions, and utilize 64 GPUs for training
with all other annotation formats. We list the corresponding time required for training with different
annotation formats in Table 12.
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Annotation
Hyperparameter Evaluation results

Epoch Batch size # Tokens ImageNet Flickr COCO Share-
GPT4V

DCI-
concat

GBC
test

Short

10 4,096
77 38.8 64.8 38.7 79.1 57.5 87.8

512 39.0 64.7 39.3 86.7 56.4 89.7

10 33.2 59.1 34.7 74.0 52.3 83.4
28 16,384 77 40.0 67.4 38.7 80.6 58.1 88.6
40 39.0 65.7 37.3 79.9 57.8 88.6

GBC-captions 40.8 70.0 43.0 80.4 64.1 91.2
GBC-concat 10 4,096 77 39.0 66.1 40.0 90.5 69.9 94.8
GBC-graph 38.2 67.1 40.8 77.1 61.5 95.9

Table 13: Comparative performance across various benchmarks when we perform CLIP training on short
captions with different hyperparameters. For ease of reference, we also include the results from the methods that
use GBC annotations. We report the average image and text Recall@1 for all retrieval benchmarks. Specifically,
as explained in Section 5.4, we perform retrieval using various annotation formats for GBC test. We thus report
here the average of the highest image and text Recall@1 scores. The number of iterations is consistently set at
45,000, corresponding to 20 epochs with a batch size of 4,096 and 76 epochs with a batch size of 16,384.

E.5 Evaluation details

Our evaluation uses the validation set of ImageNet-1k [51] and the test sets of Flickr30k [47] and
MS-COCO [41]. For SugarCrepe [27] we report the average performance across all variants. As for
ShareGPT4V [76], we use a subset of size 15, 295 from ShareGPT4V-cap100k. These images were
also used for LLaVA training.11 When each image is paired with multiple captions, we only select
one of them. The evaluation setups with ADE20K and DCI are more involved, as we explain below.

Evaluation on ADE20K. We evaluate the quality of CLIP models’ image encoder for dense
prediction tasks like image segmentation by performing full finetuning on ADE20k [76] dataset. We
follow the same setup as described in [62, 63] where we use a ViTDet style feature pyramid network
with UperNet [67] head. All models were trained using the MMSegmentation library [11]. We sweep
through peak learning rate for all the results reported in the paper and the ranges are listed in Table 11.

Evaluation on DCI. We perform text-to-image and image-to-text evaluations on DCI [61] using
either long captions or concatenated captions. The long captions are marked as extra_caption in
the released DCI dataset. We filter out samples with empty long captions, resulting in a subset of
7,602 images for evaluation with long captions. Regarding evaluation with concatenated captions, we
leverage the full set of 7,805 images. We retain masks containing summary captions (these are masks
with bounding boxes larger than 224× 224). If the human-annotated caption contains fewer than 77
tokens and is longer than the first summary caption, we use it. Otherwise, we use the first summary
caption. For concatenation, we follow the Breadth-First Search (BFS) order based on the provided
tree structure between the masks.

F Additional results and experiments

In this appendix, we present additional ablations that we have performed but were not presented in
the main paper due to space constraints.

F.1 Matching compute resource for training with short captions

All our models presented in Section 5 used 8 nodes for training, except for the models trained on
short captions, which only used 2 nodes. This raises the question of whether the performance gap
could be bridged by providing more computational resources to this setup. To address this, we
specifically considered two modifications that would naturally necessitate using more nodes for
training with short captions: (i) extending the context length to 512, as done for training with Long
and GBC-concat captions, and (ii) using a batch size that is four times larger, i.e., a batch size of

11https://huggingface.co/datasets/liuhaotian/LLaVA-Pretrain Accessed: 2024-05-14
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Annotation ImageNet Flickr-1k MSCOCO-5k SugarCrepe Average Drop

Short 38.8 → 35.2 64.8 → 61.0 38.7 → 36.7 76.0 → 74.4 -2.75
Long 39.6 → 30.5 65.8 → 56.8 40.1 → 33.5 77.0 → 74.0 -6.93
GBC-captions 40.8 → 31.9 70.0 → 58.3 43.0 → 33.2 76.7 → 73.3 -8.45

Table 14: Performance degradation across different annotation types when switching from multi-positive
contrastive loss to standard contrastive loss with randomly sampled positive captions. For Flickr-1k and
MSCOCO-5k we report the average image and text Recall@1.

16,384 instead of 4,096. All other hyperparameters remained unchanged. We then trained the models
on 8 nodes, each with 8 GPUs, as in the other setups, which resulted in training times of 18 and 48
hours for the two modifications respectively. The evaluation results are presented in Table 13.

Training with extended context length. Provided that the models are only trained with short
captions, we do not expect any tangible benefit from extending the context length. Yet, surprisingly,
while this is indeed the case for classic benchmarks such as ImageNet, Flickr, and COCO, we do
observe a significant performance boost on ShareGPT4V retrieval, suggesting that the longer context
length is still beneficial for retrieval with long caption even though the model is not explicitly trained
for this task. On the other hand, we do not observe any benefit when evaluated using concatenated
caption from DCI. Finally, we also get a slight performance improvement on GBC test, and it turns
out this improved performance is achieved by performing retrieval using the long caption. This is in
line with the performance gain that we observe for the ShareGPT4V benchmark.

Training with larger batch size. More interestingly, CLIP is known to perform better when trained
with a large batch size, so we might be able to bridge the performance gap by simply including more
images and captions in each batch. To enable a fair comparison for this setup, we report evaluation
results from three checkpoints at varying training stages in Table 13. These checkpoints are chosen to
align with key training milestones.
• Number of images seen: We consider the EMA checkpoint at the end of epoch 10 to align the

number of images seen.

• Number of iterations: We include the EMA checkpoint at the end of epoch 40 to compare models
at a fixed number of training iterations.

• Best performing checkpoint: Additionally, we report results for the EMA checkpoint at the end
of epoch 28, as it gives the best performance among all evaluated checkpoints (see Figure 32).

As we can see from the table, while the use of a larger batch size indeed leads to better performance on
ImageNet and Flickr, the results still lag behind those achieved with GBC-captions. This discrepancy
underscores the importance of including multiple captions per image to enhance performance.

F.2 The importance of multi-positive contrastive loss

We next look into the influence of the objective function when an image is paired with multiple
captions. Instead of employing the multi-positive contrastive loss introduced in Appendix D.2, we
can use a standard contrastive loss with a single randomly sampled caption paired with each image.
Table 14 presents the evaluation results for both the models trained with the original objective (left
side of the arrow), and this new, sampled, objective (right side of the arrow).
The table clearly shows a performance decline across all the considered annotation formats and
benchmarks when sampling is applied, as also observed by Doveh et al. [14] and Fan et al. [16].
The performance drop is particularly important when the captions vary significantly (e.g., long
versus short captions, or image versus region captions), and when many captions are involved. More
surprisingly, this alternative loss does not lead to improvement but rather to performance degradation
when we increase the number of captions paired with each image. We conjecture this is because the
additional captions that we consider here are less relevant for these specific benchmarks, leading to a
worse performance when they are forced to be treated as positive in the sampled objective.
Overall, these results confirm the importance of our multi-positive contrastive loss in leveraging
the presence of multiple captions for an image.
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Annotation
Flickr-1k MSCOCO-5k DCI-concat

ImageNet SugarCrepe ADE20K
T2I I2T T2I I2T T2I I2T

Short 56.3 73.2 30.7 46.7 57.5 57.5 38.8 76.0 42.0
Region 58.3 76.6 31.5 49.1 61.8 61.5 38.5 75.6 43.5
GBC-Relation 60.4 76.5 34.8 52.5 62.0 61.4 41.5 76.4 44.5
GBC-captions 60.6 79.3 34.1 51.9 64.1 63.4 40.8 76.7 45.0

Table 15: Comparative performance on various existing benchmarks when trained using different subsets of
GBC-captions.

Annotation
Short GBC-graph Star graph Line graph

T2I I2T
Groundtruth Last token Random token
T2I I2T T2I I2T T2I I2T T2I I2T T2I I2T

GBC-graph 84.3 85.2 95.7 96.1 91.7 92.4 95.1 95.4 94.8 94.9 91.8 92.5

Table 16: Image and text retrieval performance on the GBC test set when the model is trained using GBC-graph
and evaluated across various underlying graph structures.

F.3 Impact of caption type on CLIP training

To further highlight the value of relation and composition captions from GBC, we trained a CLIP
model using only these captions alongside short image captions. As shown in the third row of
Table 15, these captions, despite being more than twice as scarce as region captions, not only provided
a larger performance gain than using only region captions, but sometimes even enabled the model to
achieve comparable or better performance than using all captions combined. This underscores the
significant benefit of the relational captions from GBC datasets.
Looking closely, we note that region captions primarily benefit retrieval and dense prediction tasks,
while relation and composition captions improve performance across the board. While using all
captions remains the best approach for most benchmarks, the marginal improvement from region
captions hints at the potential for more efficient training with these captions through alternative
training objectives.

F.4 Impact of the underlying graph on retrieval

In this part, we investigate how much GBC-graph relies on the underlying graph structure for retrieval.
For this, we probe the performance of our model when the graph is modified either in the mapped
tokens or in the connectivity patterns. In terms of the mapped tokens, we consider
• Last token: For any edge from a caption C to another caption C ′, we mapped the information of
C ′ to the last token before the summary token in C.12

• Random token: For each edge, we randomly map the information to one token in the source
caption.

As for the connectivity pattern, we investigate
• Star graph: All the captions are mapped to the short image synthetic caption.
• Line graph: We map each caption to its next caption in a list (ordered as in GBC-concat following

the BFS order), with the short image synthetic caption being the first in the list.
The results are shown in Table 16. Since random-token mapping consistently leads to better result than
last-token mapping, we only report results for this in the case of star graph and line graph. First of all,
we observe that no matter which graph is given, we always achieve better performance than retrieval
with only short caption, suggesting that the model is always able to exploit the additional captions to
some extent. Furthermore, employing random-token mapping, whether with the groundtruth graph
topology or the star graph, yields performance that closely matches that of using the groundtruth
graph with correct mapping (interestingly, when using star graph the performance is also very close
to that obtained with GBC-concat, see Table 3). This suggests that the specific retrieval task we are

12We also experimented with mapping the information to the summary token but this completely destroys the
performance.
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Annotation ImageNet Flickr-1k MSCOCO-5k SugarCrepe ShareGPT4V-15k GBC test

CC12M 37.1 50.5 27.9 39.4 47.2 49.5

Short 37.5 62.0 36.1 74.5 77.3 86.9
Long 38.5 64.5 38.4 75.8 93.5 95.5
Region 40.3 68.6 40.8 76.1 78.9 91.8
GBC-captions 41.3 70.6 43.1 76.4 80.1 91.9
GBC-concat 38.2 63.4 37.1 74.9 89.8 96.1
GBC-graph 39.9 68.5 40.9 74.6 77.5 96.2

Table 17: Comparative performance on various existing benchmarks when trained using different annotation
schemes. Unlike the other tables that report performance for EMA checkpoints, this table presents the perfor-
mance at the final non-EMA checkpoints obtained from the end of training.

examining is not highly dependent on the provided mapping and topology. However, we do believe
the mapping and topology could play a significant role in other tasks or when more fine-grained
distinctions between images are necessary.

F.5 Evaluating at non-EMA checkpoints

For the sake of completeness, we also perform evaluation on the non-EMA checkpoints, with results
shown in Table 17 and Figure 33. Comparing Figure 32 with Figure 33, we see that while EMA
checkpoints may experience a drop in performance during later training stages, non-EMA checkpoints
typically exhibit best performance at the final training checkpoint. Consequently, our evaluations in
Table 17 are based on these last checkpoints. From the evaluation results, we observe a similar trend
in the performance comparison of annotation formats with non-EMA checkpoints as with EMA ones,
confirming the validity of our previous claims. Finally, we also note that the use of larger batch size
when training with short captions is only beneficial when we consider EMA checkpoints.

G Image attributions

All the images that we show in this paper come from Wikimedia Commons. We provide in Table 18
the exact source urls and license for each of the images. The urls to the CC BY-SA 3.0 and
GFDL 1.2 licenses are respectively https://creativecommons.org/licenses/by-sa/3.0/
and https://www.gnu.org/licenses/old-licenses/fdl-1.2.txt.

Image Source URL License

Figure 1 https://commons.wikimedia.org/wiki/File:
Tartu_raudteejaama_veetorn,_2010.JPG

CC BY-SA 3.0

Figure 2 https://commons.wikimedia.org/wiki/File:
Eiffel_Tower_from_north_Avenue_de_New_York,
_Aug_2010.jpg

CC BY-SA 3.0

Figure 30

Flame https://commons.wikimedia.org/wiki/File:
Flametest--Na.swn.jpg

CC BY-SA 3.0

Messe https://commons.wikimedia.org/wiki/File:
Messe_mit_Wandlungskerze_Beuron.jpg

Public domain

Regalia https://commons.wikimedia.org/wiki/File:
Crown,_sceptre,_orb_%26_key_of_the_King_of_
Sweden_2014.jpg

Public domain

Figure 31 https://commons.wikimedia.org/wiki/File:
Indian-Elephant-444.jpg

GFDL 1.2

Table 18: Source URLs and licenses of the images shown in this paper.

46

https://creativecommons.org/licenses/by-sa/3.0/
https://www.gnu.org/licenses/old-licenses/fdl-1.2.txt
https://commons.wikimedia.org/wiki/File:Tartu_raudteejaama_veetorn,_2010.JPG
https://commons.wikimedia.org/wiki/File:Tartu_raudteejaama_veetorn,_2010.JPG
https://commons.wikimedia.org/wiki/File:Eiffel_Tower_from_north_Avenue_de_New_York,_Aug_2010.jpg
https://commons.wikimedia.org/wiki/File:Eiffel_Tower_from_north_Avenue_de_New_York,_Aug_2010.jpg
https://commons.wikimedia.org/wiki/File:Eiffel_Tower_from_north_Avenue_de_New_York,_Aug_2010.jpg
https://commons.wikimedia.org/wiki/File:Flametest--Na.swn.jpg
https://commons.wikimedia.org/wiki/File:Flametest--Na.swn.jpg
https://commons.wikimedia.org/wiki/File:Messe_mit_Wandlungskerze_Beuron.jpg
https://commons.wikimedia.org/wiki/File:Messe_mit_Wandlungskerze_Beuron.jpg
https://commons.wikimedia.org/wiki/File:Crown,_sceptre,_orb_%26_key_of_the_King_of_Sweden_2014.jpg
https://commons.wikimedia.org/wiki/File:Crown,_sceptre,_orb_%26_key_of_the_King_of_Sweden_2014.jpg
https://commons.wikimedia.org/wiki/File:Crown,_sceptre,_orb_%26_key_of_the_King_of_Sweden_2014.jpg
https://commons.wikimedia.org/wiki/File:Indian-Elephant-444.jpg
https://commons.wikimedia.org/wiki/File:Indian-Elephant-444.jpg


10000 20000 30000 40000
# Iterations

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Ac
cu

ra
cy

ImageNet

Short
Short [bs16384]
Long
Region
GBC-captions
GBC-concat
GBC-graph

10000 20000 30000 40000
# Iterations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Av
er

ag
e 

Im
ag

e 
an

d 
Te

xt
 R

ec
al

l@
1

Flickr-1k

Short
Short [bs16384]
Long
Region
GBC-captions
GBC-concat
GBC-graph

10000 20000 30000 40000
# Iterations

0.0

0.1

0.2

0.3

0.4

Av
er

ag
e 

Im
ag

e 
an

d 
Te

xt
 R

ec
al

l@
1

MSCOCO-5k

Short
Short [bs16384]
Long
Region
GBC-captions
GBC-concat
GBC-graph

10000 20000 30000 40000
# Iterations

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e 

Im
ag

e 
an

d 
Te

xt
 R

ec
al

l@
1

GBC test

Short
Short [bs16384]
Long
Region
GBC-captions
GBC-concat
GBC-graph

Figure 32: Benchmark performances on ImageNet, Flickr-1k, MSCOCO-5k, and GBC test for EMA checkpoints
of models trained with different annotations / hyperparameters. For GBC test we use different formats for
retrieval at test time and average the highest scores that are respectively obtained for text-to-image and image-to-
text retrievals.
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Figure 33: Benchmark performances on ImageNet, Flickr-1k, MSCOCO-5k, and GBC test for non-EMA
checkpoints of models trained with different annotations / hyperparameters. For GBC test we use different
formats for retrieval at test time and average the highest scores that are respectively obtained for text-to-image
and image-to-text retrievals.
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