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Abstract

We examine the problem of regret minimization when the learner is involved in a continuous game
with other optimizing agents: in this case, if all players follow a no-regret algorithm, it is possible to
achieve significantly lower regret relative to fully adversarial environments. We study this problem in the
context of variationally stable games (a class of continuous games which includes all convex-concave and
monotone games), and when the players only have access to noisy estimates of their individual payoff
gradients. If the noise is additive, the game-theoretic and purely adversarial settings enjoy similar regret
guarantees; however, if the noise is multiplicative, we show that the learners can, in fact, achieve constant
regret. We achieve this faster rate via an optimistic gradient scheme with learning rate separation –
that is, the method’s extrapolation and update steps are tuned to different schedules, depending on the
noise profile. Subsequently, to eliminate the need for delicate hyperparameter tuning, we propose a fully
adaptive method that smoothly interpolates between worst- and best-case regret guarantees.

1 Introduction

Owing to its simplicity and versatility, the notion of regret has been the mainstay of online learning ever since
the field’s first steps [9, 24]. Stated abstractly, it concerns processes of the following form:
1. At each stage t = 1, 2, . . . , the learner selects an action xt from some d-dimensional real space.
2. The environment determines a convex loss function ℓt and the learner incurs a loss of ℓt(xt).
3. Based on this loss (and any other piece of information revealed), the learner updates their action xt ← xt+1

and the process repeats.
In this general setting, the agent’s regret RegT is defined as the difference between the cumulative loss incurred
by the sequence (xt)t versus that of the best fixed action over the horizon of play T . Accordingly, the learner’s
objective is to minimize the growth rate of RegT , guaranteeing in this way that the chosen sequence of actions
becomes asymptotically efficient over time.
Without further assumptions on the learner’s environment or the type of loss functions encountered, it is not
possible to go beyond the well-known minimax regret bound of Ω(

√
T ) [25, 54], which is achieved by the online

gradient descent (OGD) policy of Zinkevich [57]. However, this lower bound concerns environments that are
“adversarial” and loss functions that may vary arbitrarily from one stage to the next: if the environment is
“smoother” – and not actively seeking to sabotage the learner’s efforts – one could plausibly expect faster
regret minimization rates.
This question is particularly relevant – and has received significant attention – in the backdrop of multi-agent
learning in games. Here, the learners’ environment is no longer arbitrary: instead, each player interacts with
other regret minimizing players, and every player’s individual loss function is determined by the actions
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Figure 1: The behavior of different algorithms on the game minθ∈R maxϕ∈R θϕ when the feedback is corrupted by
noise. Left: trajectories of play. Center: regret of Player 1. Right: distance to equilibrium. Adaptive OptDA+ is run
with q = 1/4. See Example 1 for the details of the model and Appendix C for additional figures.

chosen by all players via a fixed underlying mechanism – that of a non-cooperative game. Because of this
mechanism – and the fact that players are changing their actions incrementally from one round to the next –
the learners are facing a much more “predictable” sequence of events. As a result, there has been a number
of research threads in the literature showing that it is possible to attain near-constant regret (i.e., at most
polylogarithmic) in different classes of games, from the works of [14, 33] on finite two-player zero-sum games,
to more recent works on general-sum finite games [1, 2, 16], extensive form games [20], and even continuous
games [28].

Our contributions in the context of related work. The enabling technology for this range of near-
constant regret guarantees is the optimistic gradient (OG) algorithmic template, itself a variant of the
extra-gradient (EG) algorithm of Korpelevich [36]. The salient feature of this method – first examined by
Popov [50] in a game-theoretic setting and subsequently popularized by Rakhlin and Sridharan [51] in the
context of online learning – is that players use past gradient information to take a more informed “look-ahead”
gradient step that stabilizes the method and leads to lower regret. This, however, comes with an important
caveat: all of the above works crucially rely on the players’ having access to exact payoff gradients, an
assumption which is often violated in practice. When the players’ feedback is corrupted by noise (or other
uncertainty factors), the very same algorithms discussed above may incur superlinear regret (cf. Figure 1),
leading to the following question:

Is it possible to achieve constant regret in the presence of noise and uncertainty?

Our paper seeks to address this question in a class of continuous games that satisfy a variational stability
condition in the spirit of [28]. This class contains all bilinear min-max games (the unconstrained analogue of
two-player, zero-sum finite games), cocoercive and monotone games, and it is one of the settings of choice
when considering applications to generative models and robust reinforcement learning [12, 27, 32, 39]. As
for the noise contaminating the players’ gradient feedback, we consider two standard models that build on a
classical distinction by Polyak [49] : a) additive; and b) multiplicative gradient noise. The first model is more
common when dealing with problem-agnostic first-order oracles [44]; the latter arises naturally in the study of
randomized coordinate descent [44], asynchronous player updating schemes [5], signal processing and control
[53], etc.
In this general context, our contributions can be summarized as follows:
1. We introduce a learning rate separation mechanism that effectively disjoins the extrapolation and update

steps of the OG algorithm. The resulting method, which we call OG+, guarantees O(
√
T ) regret in

the presence of additive gradient noise; however, if the noise is multiplicative and the method is tuned
appropriately, it achieves constant O(1) regret.

2. On the downside, OG+ may fail to achieve sublinear regret in an adversarial environment. To counter
this, we propose a “primal-dual” variant of OG+, which we call OptDA+, and which retains the above
properties of OG+, while achieving O(

√
T ) regret in the adversarial case.

3. Subsequently, to obviate the need for delicate hyperparameter tuning, we propose a fully adaptive method
that smoothly interpolates between the worst- and best-case regret guarantees mentioned above, without
any prior knowledge of the game or the uncertainties involved.
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4. Finally, we complement our analysis with a series of equilibrium convergence results for the range of
algorithms presented above under both additive and multiplicative noise.

To the best of our knowledge, the proposed methods are the first in the literature to achieve constant regret
in the presence of stochasticity (even in the simplest case where the noise profile is known in advance). In
this regard, our work can be seen as a first estimation of the degree of uncertainty that can enter the process
before the aspiration of constant (or polylogarithmic) regret becomes an impossible proposition.
In the paper’s appendix, we discuss some further related works that are relevant but not directly related
to our work. We also mention here that our paper focuses on the unconstrained setting, as this simplifies
considerably the presentation and treatment of multiplicative noise models. We defer the constrained case
(where players must project their actions to a convex subset of Rd), to future work.

2 Problem Setup

Throughout this paper, we focus on deriving optimal regret minimization guarantees for multi-agent game-
theoretic settings with noisy feedback. Starting with the single-agent case, given a sequence of actions
xt ∈ X = Rd and a sequence of loss functions ft : X → R, we define the associated regret induced by xt
relative to a benchmark action p ∈ X as

RegT (p) =

T∑
t=1

[ft(xt)− ft(p)]. (1)

We then say that learner has no regret if RegT (p) = o(T ) for all p ∈ X . In the sequel, we extend this basic
framework to the multi-agent, game-theoretic case, and we discuss the various feedback model available to the
optimizer(s).

No-regret learning in games. The game-theoretic analogue of the above framework is defined as follows.
We consider a finite set of players indexed by i ∈ N = {1, . . . , N}, each with their individual action space
X i = Rdi and their associated loss function ℓi : X → R, where X = Πi∈NX i denotes the game’s joint action
space. For clarity, any ensemble of actions or functions whose definition involves multiple players will be
typeset in bold. In particular, we will write x = (xi,x−i) ∈ X for the action profile of all players, where xi

and x−i respectively denote the action of player i and the joint action of all players other than i. In this way,
each player i ∈ N incurs at round t a loss ℓi(xt) which is determined not only by their individual action xit,
but also by the actions x−i

t of all other players. Thus, by drawing a direct link with (1), given a sequence of
play xit, the individual regret of each player i ∈ N is defined as

RegiT (p
i) =

T∑
t=1

ℓ(xit,x
−i
t )− ℓ(pi,x−i

t ), (2)

From a static viewpoint, the most widely solution concept in game theory is that of a Nash equilibrium,
i.e., a state from which no player has incentive to deviate unilaterally. Formally, a point x⋆ ∈ X is a Nash
equilibrium if for all i ∈ N and all xi ∈ X i, we have ℓi(xi⋆,x

−i
⋆ ) ≤ ℓi(xi,x−i

⋆ ). In particular, if the players’
loss functions are assumed individually convex (see below), Nash equilibria coincide precisely with the zeros
of the players’ individual gradient field V i = ∇xi ℓi, i.e., x⋆ is a Nash equilibrium if and only if V(x⋆) = 0.
We will make the following blanket assumptions for all this:

Assumption 1 (Convexity and Smoothness). For all i ∈ N , ℓi is convex in xi and the individual gradient of
each player ∇xi ℓi is L-Lipschitz continuous.

Assumption 2 (Variational Stability). The solution set X⋆ = {x ∈ X : V(x) = 0} of the game is nonempty,
and for all x ∈ X , x⋆ ∈ X⋆, we have ⟨V(x),x− x⋆⟩ =

∑
i∈N ⟨V i(x), xi − xi⋆⟩ ≥ 0.

Some important families of games that satisfy Assumption 2 condition are monotone games (i.e., V is
monotone), which include convex-concave zero-sum games, zero-sum polymatrix games, etc.

Oracle feedback and noise models. In terms of feedback, we will assume that players have access to
noisy estimates of their individual payoff gradients, and we will consider two noise models, additive noise and
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multiplicative noise. To illustrate the difference between these two models, suppose we wish to estimate the
value of some quantity v ∈ R. Then, an estimate of v with additive noise is a random variable v̂add of the form
v̂add = v + ξadd for some zero-mean noise variable ξadd; analogously, a multiplicative noise model for v is a
random variable of the form v̂mult = v(1 + ξmult) for some zero-mean noise variable ξmult. The two models can
be compared directly via the additive representation of the multiplicative noise model as v̂mult = v + ξmultv,
which gives Var[ξadd] = v2Var[ξmult].
With all this in mind, we will consider the following oracle feedback model: let git = V i(xt) + ξit denote
the gradient feedback to player i at round t, where ξit represents the aggregate measurement error relative
to V i(xt). Then, with (Ft)t∈N denoting the natural filtration associated to (xt)t∈N and Et[·] = E[· | Ft]
representing the corresponding conditional expectation, we make the following standard assumption for the
measurement error vector ξt = (ξit)i∈N .

Assumption 3. The noise vector (ξt)t∈N satisfies the following requirements for some σA, σM ≥ 0.
(a) Zero-mean: For all i ∈ N and t ∈ N, Et[ξit] = 0.
(b) Finite variance: For all i ∈ N and t ∈ N, Et[∥ξit∥2] ≤ σ2

A + σ2
M∥V i(xt)∥2.

As an example of the above, the case σA, σM = 0 corresponds to “perfect information”, i.e., when players
have full access to their payoff gradients. The case σA > 0, σM = 0, is often referred to as “absolute noise”,
and it is a popular context-agnostic model for stochastic first-order methods, cf. [31, 43] and references
therein. Conversely, the case σA = 0, σM > 0, is sometimes called “relative noise” [49], and it is widely used
as a model for randomized coordinate descent methods [44], randomized player updates in game theory [5],
physical measurements in signal processing and control [53], etc. In the sequel, we will treat both models
concurrently, and we will use the term “noise” to tacitly refer to the presence of both additive and multiplicative
components.

3 Optimistic gradient methods: Definitions, difficulties, and a test case

To illustrate some of the difficulties faced by first-order methods in a game-theoretic setting, consider the
standard bilinear problem minθ∈R maxϕ∈R θϕ, i.e., ℓ1(θ, ϕ) = θϕ = −ℓ2(θ, ϕ). This simple game has a unique
Nash equilibrium at (0, 0) but, despite this uniqueness, it is well known that standard gradient descent/ascent
methods diverge on this simple problem [15, 41]. To remedy this failure, one popular solution consists of
incorporating an additional extrapolation step at each iteration of the algorithm, leading to the optimistic
gradient (OG) method

xit+1 = xit − 2ηit+1g
i
t + ηitg

i
t−1,

where ηit is player i’s learning rate at round t. For posterity, it will be convenient to introduce the auxiliary
iterate Xi

t and write Xi
t+ 1

2

= xit, in which case the above update rule becomes

Xi
t+ 1

2
= Xi

t − ηitg
i
t−1, Xi

t+1 = Xi
t − ηit+1g

i
t. (OG)

This form of the algorithm effectively decouples the learner’s extrapolation step (performed with git−1, which
acts here as an optimistic guess for the upcoming feedback), and the bona fide update step, which exploits the
received feedback git to update the player’s action state from Xi

t to Xi
t+1. This mechanism helps the players

attain a) lower regret when their utilities vary slowly [13, 51]; and b) near-constant regret when all players
employ the said algorithm in certain classes of games.
However, the above guarantees concern only the case of perfect gradient feedback, and may fail completely
when the feedback is contaminated by noise, as illustrated in the following example.

Example 1. Suppose that the game’s objective is an expectation over L1(θ, ϕ) = 3θϕ and L2(θ, ϕ) = −θϕ so
that ℓ1 = −ℓ2 = (L1 + L2)/2. At each round, we randomly draw L1 or L2 with probability 1/2 and return
the gradient of the sampled function as feedback. Assumption 3 is clearly satisfied here with σA = 0 and
σM = 2; however, as shown in Figure 1, running (OG) with either constant or decreasing learning rate leads
to i) divergent trajectories of play; and ii) regret oscillations that grow superlinearly in magnitude over time.

In view of the above negative results, we propose in the next section a simple fix of the algorithm that allows
us to retain its constant regret guarantees even in the presence of noise.
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4 Regret minimization with noisy feedback

In this section, we introduce OG+ and OptDA+, our backbone algorithms for learning under uncertainty,
and we present their guarantees in different settings. All proofs are deferred to the appendix.

Learning rate separation and the role of averaging. Viewed abstractly, the failure of OG in the face
of uncertainty should be attributed to its inability of separating noise from the expected variation of utilities.
In fact, in a noisy environment, the two consecutive pieces of feedback are only close in expectation, so a
player can only exploit this similarity when the noise is mitigated appropriately.
To overcome this difficulty, we adopt a learning rate separation strategy originally proposed for the EG
algorithm by Hsieh et al. [27]. The key observation here is that by taking a larger extrapolation step, the
noise effectively becomes an order of magnitude smaller relative to the expected variation of utilities. We
refer to this generalization of OG as OG+, and we define it formally as

Xi
t+ 1

2
= Xi

t − γitg
i
t−1, Xi

t+1 = Xi
t − ηit+1g

i
t, (OG+)

where γit ≥ ηit > 0 are the player’s learning rates (assumed Ft−1-measurable throughout the sequel). Nonethe-
less, the design of OG+ is somehow counter-intuitive because the players’ feedback enters the algorithm
with decreasing weights. This feature opens up the algorithm to adversarial attacks that can drive it to a
suboptimal regime in early iterations, as formally shown in [47, Thm. 3].
To circumvent this issue, we also consider a dual averaging variant of OG+ that we refer to as OptDA+,
and which treats the gradient feedback used to update the players’ chosen actions with the same weight.
Specifically, OptDA+ combines the mechanisms of optimism [15, 51], dual averaging [28, 46, 55] and learning
rate separation [27] as follows

Xi
t+ 1

2
= Xi

t − γitg
i
t, Xi

t+1 = Xi
1 − ηit+1

t∑
s=1

gis. (OptDA+)

As we shall see below, these mechanisms dovetail in an efficient manner and allow the algorithm to achieve
sublinear regret even in the adversarial regime. [Of course, OG+ and OptDA+ coincide when the update
learning rate ηit is taken constant.]

Quasi-descent inequality. Before stating our main results on the regret incurred by OG+ and OptDA+,
we present the key quasi-descent inequality that underlies our analysis, as it provides theoretical evidence on
how the separation of learning rates can lead to concrete performance benefits.

Lemma 1. Let Assumptions 1 and 3 hold and all players run either (OG+) or (OptDA+) with non-increasing
learning rate sequences γit, ηit. Then, for all i ∈ N , t ≥ 2, and pi ∈ X i, we have

Et−1

[
∥Xi

t+1 − pi∥2

ηit+1

]
≤ Et−1

[
∥Xi

t − pi∥2

ηit
+

(
1

ηit+1

− 1

ηit

)
∥uit − pi∥2 (3a)

− 2⟨V i(Xt+ 1
2
), Xi

t+ 1
2
− pi⟩ (3b)

− γit(∥V i(Xt+ 1
2
)∥2 + ∥V i(Xt− 1

2
)∥2) (3c)

− ∥Xi
t −Xi

t+1∥2/2ηit + γit∥V i(Xt+ 1
2
)− V i(Xt− 1

2
)∥2 (3d)

+ (γit)
2L∥ξit− 1

2
∥2 + L∥ξt− 1

2
∥2(ηt+γt)

2 + 2ηit∥git∥2
]
, (3e)

where i) ∥ξt− 1
2
∥2(ηt+γt)

2 :=
∑N
j=1(η

j
t + γjt )

2∥ξj
t− 1

2

∥2, and ii) uit = Xi
t if player i runs (OG+) and uit = Xi

1 if
player i runs (OptDA+).

Lemma 1 indicates how the (weighted) distance between the player’s chosen actions and a fixed benchmark
action evolves over time. In order to provide some intuition on how this inequality will be used to derive our
results, we sketch below the role that each term plays in our analysis.
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1. Thanks to the convexity of the players’ loss functions, the regret of each player can be bounded by the
sum of the pairing terms in (3b). On the other hand, taking x⋆ ∈ X⋆, pi = xi⋆, and summing from i = 1 to
N , we obtain −2⟨V(Xt+ 1

2
),Xt+ 1

2
− x⋆⟩, which is non-positive by Assumption 2, and can thus be dropped

from the inequality.
2. The weighted squared distance to pi, i.e., ∥Xi

t − pi∥2/ηit, telescopes when controlling the regret (Section 4)
and serves as a Lyapunov function for equilibrium convergence (cf. Section 6).

3. The negative term in (3c) provides a consistent negative drift that partially cancels out the noise.
4. The difference in (3d) can be bounded using the smoothness assumption and leaves out terms that are in

the order of γit(γ
j
t )

2.

5. Line (3e) contains a range of positive terms of the order (γjt )
2 + ηit. To ensure that they are sufficiently

small with respect to the decrease of (3c), both (γjt )j∈N and ηit/γ
i
t should be small. Applying Assumption 3

gives E[∥git∥2] ≤ E[(1 + σ2
M )∥V i(Xt+ 1

2
)∥+ σ2

A], revealing that γit/η
i
t needs to be at least in the order of

(1 + σ2
M ).

6. Last but not least, (1/ηit+1 − 1/ηit)∥uit − pi∥2 simply telescopes for OptDA+ (in which case uit = Xi
1) but

is otherwise difficult to control for OG+ when ηit+1 differs from ηit. This additional difficulty forces us to
use a global learning rate common across all players when analysing OG+.

To summarize, OG+ and OptDA+ are more suitable for learning in games with noisy feedback because the
scale separation between the extrapolation and the update steps delivers a consistent negative drift (3c) that
is an order of magnitude greater relative to the deleterious effects of the noise. We will exploit this property
to derive our main results for OG+ and OptDA+ below.

Constant regret under uncertainty. We are now in a position to state our regret guarantees:

Theorem 1. Suppose that Assumptions 1–3 hold and all players run (OG+) with non-increasing learning
rate sequences γt and ηt such that

γt ≤ min

(
1

3L
√

2N(1 + σ2
M )

,
1

2(4N + 1)Lσ2
M

)
and ηt ≤

γt
2(1 + σ2

M )
for all t ∈ N. (4)

Then, for all i ∈ N and all pi ∈ X i, we have

(a) If γt = O(1/(t
1
4

√
log t)) and ηt = Θ(1/(

√
t log t)), then E

[
Regpi(T )

]
= Õ(

√
T ).

(b) If the noise is multiplicative and the learning rates are constant, then E
[
Regpi(T )

]
= O(1).

The first part of Theorem 1 guarantees the standard Õ(
√
T ) regret in the presence of additive noise, known

to be nearly optimal in the standard stochastic setup. What is far more surprising is the second part of
Theorem 1 which shows that when the noise is multiplicative (i.e., when σA = 0), it is still possible to achieve
constant regret. This represents a dramatic improvement in performance, which we illustrate in Figure 1: by
simply taking the extrapolation step to be 10 times larger, the player’s regret becomes completely stabilized.
In this regard, Theorem 1 provides fairly conclusive evidence that having access to exact gradient payoffs is
not an absolute requisite for achieving constant regret in a game theoretic context.
On the downside, Theorem 1 requires all players to use the same learning rate sequences, a technical difficulty
that we overcome below by means of the dual averaging mechanism of OptDA+.

Theorem 2. Suppose that Assumptions 1–3 hold and all players run (OptDA+) with non-increasing learning
rate sequences γit and ηit such that

γit ≤
1

2L
min

(
1√

3N(1 + σ2
M )

,
1

(4N + 1)σ2
M

)
and ηit ≤

γit
4(1 + σ2

M )
for all t ∈ N, i ∈ N . (5)

Then, for any i ∈ N and pi ∈ X i, we have:

(a) If γjt = O(1/t
1
4 ) and ηjt = Θ(1/

√
t) for all j ∈ N , then E

[
Regpi(T )

]
= O(

√
T ).

(b) If the noise is multiplicative and the learning rates are constant, then E
[
Regpi(T )

]
= O(1).
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The similarity between Theorems 1 and 2 suggests that OptDA+ enjoys nearly the same regret guarantee
as OG+ while allowing for the use of player-specific learning rates. As OptDA+ and OG+ coincide when
run with constant learning rates, Theorem 1(b) is in fact a special case of Theorem 2(b). However, when the
algorithms are run with decreasing learning rates, they actually lead to different trajectories. In particular,
when the feedback is corrupted by additive noise, this difference translates into the removal of logarithmic
factors in the regret bound. More importantly, as we show below, it also helps to achieve sublinear regret
when the opponents do not follow the same learning strategy, i.e., in the fully arbitrary, adversarial case.

Proposition 1. Suppose that Assumption 3 holds and player i runs (OptDA+) with non-increasing learn-
ing rates γit = Θ(1/t

1
2−q) and ηit = Θ(1/

√
t) for some q ∈ [0, 1/4]. If supxi∈X i∥V i(xi)∥ < ∞, we have

E[Regpi(T )] = O(T
1
2+q) for every benchmark action pi ∈ X i.

We introduce the exponent q in Proposition 1 because, as suggested by Theorem 2(a), the whole range of
q ∈ [0, 1/4] leads to the optimal O(

√
T ) regret bound for additive noise when all the players adhere to the use

of OptDA+. However, it turns out that taking smaller q (i.e., smaller extrapolation step) is more favorable in
the adversarial regime. This is because arbitrarily different successive feedback may make the extrapolation
step harmful rather than helpful. On the other hand, our previous discussion also suggests that taking larger
q (i.e., larger extrapolation steps), should be more beneficial when all the players use OptDA+. We will
quantify this effect in Section 6; however, before doing so, we proceed in the next section to show how the
learning rates of Proposition 1 can lead to the design of a fully adaptive, parameter-agnostic algorithm.

5 Adaptive learning rates

So far, we have focused exclusively on algorithms run with predetermined learning rates, whose tuning requires
knowledge of the various parameters of the model. Nonetheless, even though a player might be aware of their
own loss function, there is little hope that the noise-related parameters are also known by the player. Our
goal in this section will be to address precisely this issue through the design of adaptive methods enjoying the
following desirable properties:
• The method should be implementable by every individual player using only local information and without

any prior knowledge of the setting’s parameters (for the noise profile and the game alike).
• The method should guarantee sublinear individual regret against any bounded feedback sequence.

• When employed by all players, the method should guarantee O(
√
T ) regret under additive noise and O(1)

regret under multiplicative noise.
In order to achieve the above, inspired by the learning rate requirements of Theorem 2 and Proposition 1, we
fix q ∈ (0, 1/4] and consider the following Adagrad-style [18] learning rate schedule.

γit =
1(

1 +
∑t−2
s=1∥gis∥2

) 1
2−q

, ηit =
1√

1 +
∑t−2
s=1

(
∥gis∥2 + ∥Xi

s −Xi
s+1∥2

) . (Adapt)

As in Adagrad, the sum of the squared norm of the feedback appears in the denominator. This helps controlling
the various positive terms appearing in Lemma 1, such as L∥ξt− 1

2
∥2(ηt+γt)

2 and 2ηit∥git∥2. Nonetheless, this
sum is not taken to the same exponent in the definition of the two learning rates. This scale separation
ensures that the contribution of the term −γit∥V i(Xt+ 1

2
)∥2 appearing in (3c) remains negative, and it is the

key for deriving constant regret under multiplicative noise. As a technical detail, the term ∥Xi
s −Xi

s+1∥2 is
involved in the definition of ηit for controlling the difference of (3d). Finally, we do not include the previous
received feedback git−1 in the definition of γit and ηit. This makes these learning rates Ft−1-measurable, which
in turn implies E[γitηitξit− 1

2

] = 0.

From a high-level perspective, the goal with (Adapt) is to recover automatically the learning rate schedules
of Theorem 2. This in particular means that γit and ηit should grow respectively as Ω(1/t

1
2−q) and Ω(1/

√
t),

suggesting the following boundedness assumptions on the feedback.

Assumption 4. There exists G, σ̄ ≥ 0 such that i) ∥V i(xi)∥ ≤ G for all i ∈ N , xi ∈ X i; and ii) ∥ξit∥ ≤ σ̄ for
all i ∈ N , t ∈ N with probability 1.

These assumptions are standard in the literature on adaptive methods, cf. [3, 8, 19, 35].
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Regret. We begin with the method’s fallback guarantees, deferring all proofs to the appendix.

Proposition 2. Suppose that Assumption 4 holds and a player i ∈ N follows (OptDA+) with learning rates
given by (Adapt). Then, for any benchmark action pi ∈ X i, we have E[Regpi(T )] = O(T

1
2+q).

Proposition 2 provides exactly the same rate as Proposition 1, illustrating in this way the benefit of taking a
smaller q for achieving smaller regret against adversarial opponents. Nonetheless, as we see below, taking
smaller q may incur higher regret when adaptive OptDA+ is employed by all players. In particular, we require
q > 0 in order to obtain constant regret under multiplicative noise, and this prevents us from obtaining the
optimal O(

√
T ) regret in fully adversarial environments.

Theorem 3. Suppose that Assumptions 1–4 hold and all players run (OptDA+) with learning rates given by
(Adapt). Then, for any i ∈ N and point pi ∈ X i , we have E[Regpi(T )] = O(

√
T ). Moreover, if the noise is

multiplicative, we have E[Regpi(T )] = O(exp(1/2q)).

The proof of Theorem 3 is based on Lemma 1; we also note that the O(
√
T ) regret guarantee can in fact be

derived for any q ≤ 1/4 (even negative ones). The main difficulty here consists in bounding (3d), which does
not directly cancel out since γitη

i
t might not be small enough. To overcome this challenge, we have involved

the squared difference ∥Xi
s −Xi

s+1∥2 in the definition of ηit so that the sum of these terms cannot be too
large when ηit is not small enough. More details on this aspect can be found in the proof of Lemma 18 in the
appendix.

Importantly, the O(
√
T ) guarantee above does not depend on the choice of q. This comes in sharp contrast to

the constant regret bounds (in T ) that we obtain for multiplicative noise. In fact, a key step for proving this
is to show that for some (environment-dependent) constant C, we have

N∑
i=1

E

(1 + t∑
s=1

∥gis∥2
) 1

2+q
 ≤ C

N∑
i=1

E


√√√√1 +

t∑
s=1

∥gis∥2

 for all t ∈ N (6)

This inequality is derived from Lemma 1 by carefully bounding (3a), (3d), (3e) from above and bounding (3b),
(3c) from below. Applying Jensen’s inequality, we then further deduce that the right-hand side of inequality
(6) is bounded by some constant. This constant, however, is exponential in 1/q. This leads to an inherent
trade-off in the choice of q: larger values of q favor the situation where all players adopt adaptive OptDA+
under multiplicative noise, while smaller values of q provide better fallback guarantees in fully adversarial
environments.

6 Trajectory analysis

In this section, we shift our focus to the analysis of the joint trajectory of play when all players follow the
same learning strategy. We derive the convergence of the trajectory of play induced by the algorithms (cf.
Figure 1) and provide bounds on the sum of the players’ payoff gradient norms

∑T
t=1∥V(Xt+ 1

2
)∥2. This may

be regarded as a relaxed convergence criterion, and by the design of the algorithms, a feedback sequence of
smaller magnitude also suggests a more stable trajectory.

Convergence of trajectories under multiplicative noise. When the noise is multiplicative, its effect
is in expectation absorbed by the progress brought by the extrapolation step. We thus expect convergence
results that are similar to the noiseless case. This is confirmed by the following theorem.

Theorem 4. Suppose that Assumptions 1–3 hold with σA = 0 and all players run (OG+) / (OptDA+) with
learning rates given in Theorem 2(b).1 Then, Xt+ 1

2
converges almost surely to a Nash equilibrium and enjoys

the stabilization guarantee
∑+∞
t=1 E[∥V(Xt+ 1

2
)∥2] < +∞.

Idea of proof. The proof of Theorem 4 follows the following steps.

1Recall that OG+ and OptDA+ are equivalent when run with constant learning rates.
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1. We first show
∑+∞
t=1 E[∥V(Xt+ 1

2
)∥2] < +∞ using Lemma 1. This implies

∑∞
t=1∥V(Xt+ 1

2
)∥2 is finite

almost surely, and thus with probability 1, ∥V(Xt+ 1
2
)∥ converges to 0 and all cluster point of (Xt+ 1

2
)t∈N

is a solution.
2. Applying the Robbins–Siegmund theorem to a suitable quasi-descent inequality then gives the almost

sure convergence of Et−1[
∑
i∈N ∥Xi

t − xi⋆∥2/ηi] to finite value for any x⋆ ∈ X⋆.
3. The conditioning on Ft−1 makes the above quantity not directly amenable to analysis. This difficulty

is specific to the optimistic algorithms that we consider here as they make use of past feedback in each
iteration. We overcome this issue by introducing a virtual iterate X̃t = (X̃i

t)i∈N with X̃i
t = Xi

t + ηiξi
t− 1

2

that serves as a Ft−1-measurable surrogate for Xi
t . We then derive the almost sure convergence of∑

i∈N ∥X̃i
t − xi⋆∥2/ηi.

4. To conclude, along with the almost sure convergence of ∥Xt+ 1
2
− X̃t∥ and ∥V(Xt+ 1

2
)∥ to 0 we derive the

almost sure convergence of Xt+ 1
2

to a Nash equilibrium.

In case where the players run the adaptive variant of OptDA+, we expect the learning rates to behave as
constants asymptotically and thus similar reasoning can still apply. Formally, we show in the appendix that
under multiplicative noise the learning rates of the players converge almost surely to positive constants, and
prove the following results concerning the induced trajectory.

Theorem 5. Suppose that Assumptions 1–4 hold with σA = 0 and all players run (OptDA+) with learning
rates (Adapt). Then, i)

∑+∞
t=1∥V(Xt+ 1

2
)∥2 < +∞ with probability 1, and ii) Xt+ 1

2
converges almost surely to

a Nash equilibrium.

Compared to Theorem 5, we can now only bound
∑∞
t=1∥V(Xt+ 1

2
)∥2 in an almost sure sense. This is

because in the case of adaptive learning rates, our proof relies on inequality (6), and deriving a bound
on
∑∞
t=1 E[∥V(Xt+ 1

2
)∥2] from this inequality does not seem possible. Nonetheless, with the almost sure

convergence of the learning rates to positive constants, we still manage to prove almost sure last-iterate
convergence of the trajectory of play towards a Nash equilibrium.
Such last-iterate convergence results for adaptive methods are relative rare in the literature, and most of them
assume perfect oracle feedback. To the best of our knowledge, the closest antecedents to our result are [2, 39],
but both works make the more stringent cocoercive assumptions and consider adaptive learning rate that is
the same for all the players. In particular, their learning rates are computed with global feedback and are
thus less suitable for the learning-in-game setup.

Convergence of trajectories under additive noise. To ensure small regret under additive noise, we take
vanishing learning rates. This makes the analysis much more difficult as the term (1/ηit+1 − 1/ηit)∥uit − pi∥2
appearing on the right-hand side of inequality (3a) is no longer summable. Nonetheless, it is still possible to
provide bound on the sum of the squared operator norms.

Theorem 6. Suppose that Assumptions 1–3 hold and either i) all players run (OG+) with learning rates
described in Theorem 1(a) and γt = Ω(1/t

1
2−q) for some q ∈ [0, 1/4]; ii) all players run (OptDA+) with learning

rates described in Theorem 2(a) and γit = Ω(1/t
1
2−q) for all i ∈ N for some q ∈ [0, 1/4]; or iii) all players run

(OptDA+) with learning rates (Adapt) and Assumption 4 holds. Then,
∑T
t=1 E[∥V(Xt+ 1

2
)∥2] = Õ(T 1−q).

Theorem 6 suggests that the convergence speed of ∥V(Xt+ 1
2
)∥2 under additive noise actually depends on q.

Therefore, though the entire range of q ∈ [0, 1/4] leads to O(
√
T ) regret, taking larger q may result in a more

stabilized trajectory. This again goes against Propositions 1 and 2, which suggests smaller q leads to smaller
regret against adversarial opponents.
Finally, we also show last-iterate convergence of the trajectory of OG+ under additive noise.

Theorem 7. Suppose that Assumptions 1–3 hold and all players run (OG+) with non-increasing learning
rate sequences γt and ηt satisfying (4) and γt = Θ(1/(t

1
2−q
√
log t)), ηt = Θ(1/(

√
t log t)) for some q ∈ (0, 1/4].

Then, Xt converges almost surely to a Nash equilibrium. Moreover, if supt∈N E[∥ξt∥4] < +∞, then Xt+ 1
2

converges almost surely to a Nash equilibrium.
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Theorem 7, in showing that the sequence Xt generated by OG+ converges under suitable learning rates,
resolves an open question of [27]. However, compared to the said paper, the analysis of OG+ is much more
involved due to the use of past feedback, as explained above for the proof of Theorem 4. Going further,
in the second part of statement, we show that Xt+ 1

2
, the actual played action, also converges to a Nash

equilibrium as long as the 4-th moment of the noise is bounded. Compared to OptDA+, it is possible to
establish last-iterate convergence for OG+ under additive noise because we can use Et−1[∥Xt − x⋆∥2] (with
x⋆ ∈ X⋆) as a Lyapunov function here. The same strategy does not apply to OptDA+ due to summability
issues. This is a common challenge shared by trajectory convergence analysis of any sort of dual averaging
template under additive noise.

7 Concluding remarks

In this paper, we look into the fundamental problem of no-regret learning in games under uncertainty. We
exhibited algorithms that enjoy constant regret under multiplicative noise. Building upon this encouraging
result, we further studied an adaptive variant and proved trajectory convergence of the considered algorithms.
A central element that is ubiquitous in our work is the trade-off between robustness in the fully adversarial
setting and faster convergence in the game-theoretic case, as encoded by the exponent q. Whether this
trade-off is inherent to the problem or an artifact of the algorithm design warrants further investigation.
Looking forward, there are many important problems that remain to be addressed, including last-iterate
convergence analysis for OptDA+ under additive noise and an extension of our results to learning in other
type of games and/or under different types of uncertainty.
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A Prelude

The appendix is organized as follows. In Appendix B we complement our introduction with an overview
on other related works. In Appendix C we expand on our plots for better visibility. We also provide some
additional figures there. Subsequently, we build toward the proofs of our main results in Appendices D–H.
Appendix D introduces the notations used in the proofs. Some technical details concerning the measurability
of the noises and learning rates are discussed as well. Appendix E contains elementary energy inequalities
that are repeatedly used through out our analysis. Appendices F and G are dedicated to the regret analysis
of the non-adaptive and the adaptive variants. Bounds on the expectation of the sum of the squared operator
norms

∑T
t=1∥V(Xt+ 1

2
)∥2 are also established in these two sections, as bounding this quantity often consists

in an important step for bounding the regret. Finally, proofs on the trajectory convergence are presented in
Appendix H.
Importantly, in the appendix we present our results in a way that fits better the analysis. Hence, both the
organization and the ordering of the these results differ from those in the main paper. For the ease of the
reader, we summarize below how the results in the appendix correspond to those in the main paper.

Results of main paper Results of appendix

Lemma 1 Lemma 4; Lemma 6
Theorem 1 Theorem 9; Lemma 8
Theorem 2 Theorem 11; Lemma 8
Theorem 3 Theorem 13; Theorem 14; Lemma 8
Theorem 4 Theorem 10 (b); Theorem 17
Theorem 5 Theorem 18
Theorem 6 Theorem 8 (a); Theorem 10 (a); Theorem 12
Theorem 7 Theorem 15; Theorem 16
Proposition 1 Proposition 7; Lemma 8
Proposition 2 Proposition 8; Lemma 8

Table 1: Correspondence between results presented in the appendix and results presented in the main paper.

B Further Related Work

On the algorithmic side, both OG and EG have been extensively studied over the past decades in the
contexts of, among others, variational inequalities [42, 45], online optimization [13], and learning in games
[16, 51]. While the original design of these methods considered the use of the same learning rate for both the
extrapolation and the update step, several recent works have shown the benefit of scale separation between
the two steps. Our method is directly inspired by [26], which proposed a double step-size variant of EG for
achieving last-iterate convergence in stochastic variationally stable games. Among the other uses of learning
rate separation of optimistic gradient methods, we should mention here [21, 56] for faster convergence in
bilinear games, [17, 38, 48] for performance guarantees under weaker assumptions, and [22, 29] for robustness
against delays.
Concerning the last-iterate convergence of no-regret learning dynamics in games with noisy feedback, most
existing results rely on the use of vanishing learning rates and are established under more restrictive assumptions
such as strong monotonicity [7, 26, 34] or strict variational stability [40, 41]. Our work, in contrast, studies
learning with potentially non-vanishing learning rates in variationally stable games. This is made possible
thanks to a clear distinction between additive and multiplicative noise; the latter has only been formerly
explored in the game-theoretic context by [4, 39] for the class of cocoercive games.2 Relaxing the cocoercivity
assumption is a nontrivial challenge, as testified by the few number of works that establish last-iterate
convergence results of stochastic algorithms for monotone games. Except for [27] mentioned above, this was
achieved either through mini-batching [10, 30], Tikhonov regularization / Halpen iteration [37], or both [11].

2In the said works they use the term absolute random noise and relative random noise for additive noise and multiplicative
noise.
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C Additional Figures

In this section we provide the complete version of Figure 1. In additional to the algorithms already considered
in the said figure, we also present results for the case where the two players follow the vanilla gradient descent
methods, which we mark as GDA (gradient descent/ascent).
To begin, we complement the leftmost plot of Figure 1 by Figure 2, where we present individual plots of
the trajectories induced by different algorithms for better visibility. For optimistic algorithm, we present
the trajectory both of the sequence of play xt = Xt+ 1

2
and of the auxiliary iterate Xt. The two algorithms

GDA and OG have their iterates spiral out, indicating a divergence behavior, conformed to our previous
discussions. For OG+ run with constant learning rate and adaptive OptDA+, we observe that the trajectory
of Xt is much “smoother” than that of xt = Xt+ 1

2
. This is because the extrapolation step is taken with a

larger learning rate. Finally, adaptive OptDA+ has its iterates go far away from the equilibrium in the first
few iterations due to the initialization with large learning rates, but eventually finds the right learning rates
itself and ends up with a convergence speed and regret that is competitive with carefully tuned OG+.
Next, In Figure 3, we expand on the right two plots of Figure 1 with additional curves for GDA. GDA and OG
run with the same decreasing learning rate sequences ηt = 0.1/

√
t+ 1 turn out to have similar performance.

This suggests that without learning rate separation, the benefit of the extrapolation step may be completely
lost in the presence of noise.
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(a) Trajectory of xt of different learning algorithms.
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(b) Trajectory of Xt of different optimistic learning algorithms.
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(c) Trajectory of xt of adaptive OptDA+.
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(d) Trajectory of Xt of adaptive OptDA+.

Figure 2: Trajectories induced by different learning algorithms on the model described in Example 1. We recall that
for optimistic learning algorithms, the played point is xt = Xt+ 1

2
. We take q = 1/4 for adaptive OptDA+.
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Figure 3: Player 1’s regret and distance to equilibrium when both players follow a certain learning strategy in the
model described in Example 1. We take q = 1/4 for adaptive OptDA+.

D Technical Details and Notations

In this section we introduce the necessary notations for our analysis and discuss some technical details omitted
in the main text.

Noise, initialization, and measurability. Throughout our proof, to emphasize that git = V i(xit) + ξit is a
stochastic estimate of V i(Xi

t+ 1
2

) in our algorithms, we use the notations V̂ i
t+ 1

2

= git and ξi
t+ 1

2

= ξit. For the

update of Xi
3/2, we systematically take gi0 = V̂ i

1/2 = 0. We also write ξi1/2 = 0.

A part of our analysis will be built on the fact that ξi
t− 1

2

is Ft-measurable. There is however no a priori reason
for this to be true – as (Ft)t∈N is the natural filtration associated to (xt)t∈N, a sequence that can for example
be taken constant independent of the feedback. Instead, we establish here that ξi

t− 1
2

is indeed Ft-measurable
when player i uses OG+ or OptDA+ with learning rates satisfying a certain measurability assumption. To
state it, we define F it as the σ-algebra generated by {(xs)ts=1, (ξ

i
s)
t−1
s=1}.

Assumption 5. For all t ∈ N, the learning rates γit+1 and ηit+1 are F it -measurable.

The following lemma shows that whenever Assumption 5 holds, one can directly work with (Ft)t∈N.

Lemma 2. Let player i run (OG+) or (OptDA+) with learning rates satisfying Assumption 5. Then, for
every t ∈ N, it holds F it = Ft. In other words, ξi

t− 1
2

is Ft-measurable.

Proof. We prove the lemma by induction. For t = 1, this is true by definition. Now, fix t ≥ 2 and assume that
we have proven the statements for all s ≤ t− 1. To show that the statement is also true for t, we note that for
both OG+ and OptDA+, xit = Xi

t+ 1
2

is a linear combination of the vectors in {V i(xs)}t−1
s=1 ∪{ξis+ 1

2

}t−1
s=1 with

coefficients in {ηis}ts=1 ∪{γit}. All the involved quantities except for ξi
t− 1

2

is Ft−1-measurable by the induction
hypothesis. They are thus Ft-measurable, and as Xi

t is Ft-measurable by the definition of Ft we concludes
that ξi

t− 1
2

is also Ft-measurable, which along with the induction hypothesis implies immediately F it = Ft.

An immediate consequence of Lemma 2 is the following.

Corollary 1. Let player i run (OG+) or (OptDA+) with learning rates satisfying Assumption 5. Then for
every t ∈ N, γit+1 and ηit+1 are Ft-measurable.

Throughout the sequel, both Lemma 2 and Corollary 1 will be used implicitly. Our adaptive learning rates
(Adapt) apparently satisfy Assumption 5. As for the non-adaptive case, for simplicity, we assume all their
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learning rates are predetermined, that is, they are F1-measurable; for more details on this point see Remark 1.
F0 denotes the trivial σ-algebra.
As another technical detail, in our proofs we assume deterministic X1, but the entire analysis still goes through
for random X1 under the following conditions
1. For non-adaptive algorithms, we require E[∥X1∥2] < +∞.
2. For adaptive OptDA+, we require existence of R ∈ R+ such that ∥X1∥ ≤ R holds almost surely.

Notations related to the learning rates. For any x = (xi)i∈N ∈ X = Rd and α = (αi)i∈N ∈ RN+ ,

we write the weighted norm as ∥x∥α =
√∑N

i=1 α
i∥xi∥2. The weights α will be taken as a function of the

learning rates. It is thus convenient to write ηt = (ηit)i∈N and γt = (γit)i∈N for the joint learning rates. The
arithmetic manipulation and the comparisons of these vectors should be taken elementwisely. For example,
the element-wise division is 1/ηt = (1/ηit)i∈N . For ease of notation, we also write ∥α∥1 =

∑N
i=1 α

i and
∥α∥∞ = maxi∈N αi respectively for the L1 norm and the L-infinity norm of an N -dimensional vector α.

E Preliminary Analysis for OG+ and OptDA+

In this section, we lay out the basis for the analysis of OG+ and OptDA+.

E.1 Generalized Schemes with Arbitrary Input Sequences

As a starting point, we derive elementary energy inequalities for the following two generalized schemes run
with arbitrary vector sequences (gt)t∈N and (gt+ 1

2
)t∈N.

• Generalized OG+ Xt+ 1
2
= Xt − γtgt, Xt+1 = Xt − ηt+1gt+ 1

2

• Generalized OptDA+ Xt+ 1
2
= Xt − γtgt, Xt+1 = X1 − ηt+1

∑t
s=1 gs+ 1

2

In fact, Generalized OG+ with gt+ 1
2
= ∇ ft(Xt+ 1

2
) is nothing but the unconstrained, double step-size variant

of the optimistic mirror descent method proposed in [51]. On the other hand, Generalized OptDA+ with single
learning rate was introduced in [5] under the name of generalized extra-gradient. These two methods coincide
when the learning rates are taken constant. In practice, gt+ 1

2
is almost always an estimate of ∇ ft(Xt+ 1

2
)

while gt is an approximation of gt+ 1
2
. As a matter of fact, as we show in the following propositions, the

dot product ⟨gt+ 1
2
, gt⟩ appears with a negative sign in the energy inequalities, which results in a negative

contribution when the two vectors are close.
We start with the energy inequality for Generalized OG+.

Proposition 3 (Energy inequality for Generalized OG+). Let (Xt)t∈N and (Xt+ 1
2
)t∈N be generated by

Generalized OG+. It holds for any p ∈ X and t ∈ N that

∥Xt+1 − p∥2 = ∥Xt − p∥2 − 2ηt+1⟨gt+ 1
2
, Xt+ 1

2
− p⟩ − 2γtηt+1⟨gt+ 1

2
, gt⟩+ (ηt+1)

2∥gt+ 1
2
∥2.

Proof. We develop directly

∥Xt+1 − p∥2 = ∥Xt − ηt+1gt+ 1
2
− p∥2

= ∥Xt − p∥2 − 2⟨gt+ 1
2
, Xt − p⟩+ (ηt+1)

2∥gt+ 1
2
∥2

= ∥Xt − p∥2 − 2ηt+1⟨gt+ 1
2
, Xt+ 1

2
− p⟩ − 2γtηt+1⟨gt+ 1

2
, gt⟩+ (ηt+1)

2∥gt+ 1
2
∥2,

where in the last equality we use the fact that Xt = Xt+ 1
2
+ γtgt.

For Generalized OptDA+ we have almost the same inequality but for squared distance weighted by 1/ηt, with
the notation η1 = η2.
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Proposition 4 (Energy inequality for Generalized OptDA+). Let (Xt)t∈N and (Xt+ 1
2
)t∈N be generated by

Generalized OptDA+. It holds for any p ∈ X and t ∈ N that

∥Xt+1 − p∥2

ηt+1
=
∥Xt − p∥2

ηt
− ∥Xt −Xt+1∥2

ηt

+

(
1

ηt+1
− 1

ηt

)
∥X1 − p∥2 −

(
1

ηt+1
− 1

ηt

)
∥X1 −Xt+1∥2

− 2⟨gt+ 1
2
, Xt+ 1

2
− p⟩ − 2γt⟨gt+ 1

2
, gt⟩+ ⟨gt+ 1

2
, Xt −Xt+1⟩.

Proof. Using gt+ 1
2
= (Xt −X1)/ηt − (Xt+1 −X1)/ηt+1, we can write

⟨gt+ 1
2
, Xt+1 − p⟩ =

〈
Xt −X1

ηt
− Xt+1 −X1

ηt+1
, Xt+1 − p

〉
=

1

ηt
⟨Xt −Xt+1, Xt+1 − p⟩+

(
1

ηt+1
− 1

ηt

)
⟨X1 −Xt+1, Xt+1 − p⟩

=
1

2ηt
(∥Xt − p∥2 − ∥Xt+1 − p∥2 − ∥Xt −Xt+1∥2)

+

(
1

2ηt+1
− 1

2ηt

)
(∥X1 − p∥2 − ∥Xt+1 − p∥2 − ∥X1 −Xt+1∥2).

Multiplying the equality by 2 and rearranging, we get

∥Xt+1 − p∥2

ηt+1
=
∥Xt − p∥2

ηt
− ∥Xt −Xt+1∥2

ηt
+

(
1

ηt+1
− 1

ηt

)
∥X1 − p∥2

−
(

1

ηt+1
− 1

ηt

)
∥X1 −Xt+1∥2 − 2⟨gt+ 1

2
, Xt+1 − p⟩.

We conclude with the equality

⟨gt+ 1
2
, Xt+1 − p⟩ = ⟨gt+ 1

2
, Xt+1 −Xt⟩+ ⟨gt+ 1

2
, Xt −Xt+ 1

2
⟩+ ⟨gt+ 1

2
, Xt+ 1

2
− p⟩

= ⟨gt+ 1
2
, Xt+1 −Xt⟩+ γt⟨gt+ 1

2
, gt⟩+ ⟨gt+ 1

2
, Xt+ 1

2
− p⟩,

where we have used Xt = Xt+ 1
2
+ γtgt.

Throughout our work, we assume the learning rate sequences to be non-increasing. This is essential for
OptDA+, as it guarantees the following corollary.

Corollary 2. Let (Xt)t∈N and (Xt+ 1
2
)t∈N be generated by Generalized OptDA+. For any p ∈ X and t ∈ N,

if ηt+1 ≤ ηt, it holds that

∥Xt+1 − p∥2

ηt+1
≤ ∥Xt − p∥2

ηt
+

(
1

ηt+1
− 1

ηt

)
∥X1 − p∥2 − 2⟨gt+ 1

2
, Xt+ 1

2
− p⟩

− 2γt⟨gt+ 1
2
, gt⟩+ η2t ∥gt+ 1

2
∥2 +min

(
η2t ∥gt+ 1

2
∥2 − ∥Xt −Xt+1∥2

2ηt
, 0

)
.

Proof. This is immediate from Proposition 4 by applying Young’s inequality. More precisely, we use (1/ηt+1−
1/ηt)∥X1 −Xt+1∥2 ≥ 0 and

2⟨gt+ 1
2
, Xt+ 1

2
− p⟩ ≤ min

(
η2t ∥gt+ 1

2
∥2 + ∥Xt −Xt+1∥2

ηt
, 2η2t ∥gt+ 1

2
∥2 + ∥Xt −Xt+1∥2

2ηt

)
.
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E.2 Quasi-Descent Inequalities for OG+ and OptDA+

We now turn back to (OG+) and (OptDA+) introduced in Section 4. These are special cases of Generalized
OG+ and Generalized OptDA+ with gt = gt− 1

2
= V̂ i

t− 1
2

. The following lemma provides an upper bound

on the conditional expectation of ⟨V̂ i
t+ 1

2

, V̂ i
t− 1

2

⟩ when all the players follow one of the two strategies, and is
essential for establishing our quasi-descent inequities.

Lemma 3. Let Assumptions 1 and 3 hold and all players run either (OG+) or (OptDA+) with learning
rates satisfying Assumption 5. Then, for all i ∈ N and t ≥ 2, it holds

−2Et−1[⟨V̂ i
t+ 1

2
, V̂ i
t− 1

2
⟩] ≤ Et−1

[
− ∥V i(Xt+ 1

2
)∥2 − ∥V i(Xt− 1

2
)∥2

+ ∥V i(Xt+ 1
2
)− V i(Xt− 1

2
)∥2

+ L

γit∥ξit− 1
2
∥2 +

N∑
j=1

(ηjt + γjt )
2∥ξj

t− 1
2

∥2

γit

]

Proof. Thanks to Lemma 2, we can apply the law of total expectation of the expectation to get

Et−1[⟨V̂ i
t+ 1

2
, V̂ i
t− 1

2
⟩] = Et−1[⟨Et[V̂ i

t+ 1
2
], V̂ i

t− 1
2
⟩]

= Et−1[⟨V i(Xt+ 1
2
), V̂ i

t− 1
2
⟩]

= Et−1[⟨V i(Xt+ 1
2
), V i(Xt− 1

2
)⟩+ ⟨V i(Xt+ 1

2
), ξit− 1

2
⟩]. (7)

We rewrite the first term as

2⟨V i(Xt+ 1
2
), V i(Xt− 1

2
)⟩ = ∥V i(Xt+ 1

2
)∥2 + ∥V i(Xt− 1

2
)∥2 − ∥V i(Xt+ 1

2
)− V i(Xt− 1

2
)∥2. (8)

As for the second term, for all j ∈ N , we define X̃j

t+ 1
2

= Xj

t+ 1
2

+ (ηjt + γjt )ξ
j

t− 1
2

and as a surrogate for Xj

t+ 1
2

obtained by removing the noise of round t− 1. For OG+ and OptDA+ we have respectively

X̃j

t+ 1
2

= Xj
t−1 − (ηjt + γjt )V

j(Xt− 1
2
)

X̃j

t+ 1
2

= Xi
1 − ηjt

t−2∑
s=1

V̂ j

s+ 1
2

− (ηjt + γjt )V
j(Xt− 1

2
).

With Assumption 5 we then deduce that X̃t+ 1
2

is Ft−1-measurable and hence

Et−1[⟨V i(X̃t+ 1
2
), ξit− 1

2
⟩] = ⟨V i(X̃t+ 1

2
),Et−1[ξ

i
t− 1

2
]⟩ = 0.

Moreover, by definition of X̃t+ 1
2

we have

∥Xt+ 1
2
− X̃t+ 1

2
∥2 =

N∑
j=1

∥Xj

t+ 1
2

− X̃j

t+ 1
2

∥2 =

N∑
j=1

(ηjt + γjt )
2∥ξj

t− 1
2

∥2
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It then follows from the Lipschitz continuity of V i that

Et−1[−⟨V i(Xt+ 1
2
), ξit− 1

2
⟩] = Et−1[−⟨V i(Xt+ 1

2
)− V i(X̃t+ 1

2
), ξit− 1

2
⟩]

− Et−1[⟨V i(X̃t+ 1
2
), ξit− 1

2
⟩]

≤ Et−1[L∥Xt+ 1
2
− X̃t+ 1

2
∥∥ξit− 1

2
∥]

≤ Et−1

[
L

(
∥Xt+ 1

2
− X̃t+ 1

2
∥2

2γit
+

γit∥ξit− 1
2

∥2

2

)]

= Et−1

L
γit∥ξit− 1

2

∥2

2
+

N∑
j=1

(ηjt + γjt )
2∥ξj

t− 1
2

∥2

2γit

 . (9)

Putting (7), (8), and (9) together gives the desired inequality.

Quasi-Descent Inequalities for OG+. Below we establish respectively the individual and the global
quasi-descent inequalities for OG+. In this part, all the players use the same learning rate sequences and we
can thus drop the player index in the learning rates.

Lemma 4 (Individual quasi-descent inequality for OG+). Let Assumptions 1 and 3 hold and all players run
(OG+) with the same predetermined learning rate sequences. Then, for all i ∈ N , t ≥ 2, and pi ∈ X i, it holds

Et−1[∥Xi
t+1 − pi∥2] ≤ Et−1[∥Xi

t − pi∥2 − 2ηt+1⟨V i(Xt+ 1
2
), Xi

t+ 1
2
− pi⟩

− γtηt+1(∥V i(Xt+ 1
2
)∥2 + ∥V i(Xt− 1

2
)∥2)

+ γtηt+1∥V i(Xt+ 1
2
)− V i(Xt− 1

2
)∥2 + γ2

t ηt+1L∥ξit− 1
2
∥2

+ ηt+1(ηt + γt)
2L∥ξt− 1

2
∥2 + (ηt+1)

2∥V̂ i
t+ 1

2
∥2]. (10)

Proof. We apply Proposition 3 to player i’s update and p← pi. Since the inequality holds for any realization
we can take expectation with respect to Ft−1 to get

Et−1[∥Xi
t+1 − pi∥2] = Et−1[∥Xi

t − pi∥2 − 2ηt+1⟨V̂ i
t+ 1

2
, Xi

t+ 1
2
− pi⟩

− 2γtηt+1⟨V̂ i
t+ 1

2
, V̂ i
t− 1

2
⟩+ (ηt+1)

2∥V̂ i
t+ 1

2
∥2].

The learning rates γt and ηt+1 being F1-measurable and in particular Ft−1-measurable, we conclude immedi-
ately with Lemma 3 and the equality

Et−1[ηt+1⟨V̂ i
t+ 1

2
, Xi

t+ 1
2
− pi⟩] = ηt+1 Et−1[⟨V i(Xt+ 1

2
), Xi

t+ 1
2
− pi⟩].

Remark 1. From the proof of Lemma 4 we see that the exact requirement concerning the measurability
of the learning rates here is that both γt and ηt+1 should be Ft−1-measurable. For simplicity throughout
our analysis for OG+ we simply say that all the learning rates are predetermined, i.e., F1-measurable. In
contrast, for OptDA+ Assumption 5 is indeed sufficient. This is a technical detail that we have omitted in
the main text.

Lemma 5 (Global quasi-descent inequality for OG+). Let Assumptions 1–3 hold and all players run (OG+)
with the same predetermined learning rate sequences. Then, for all t ≥ 2 and x⋆ ∈ X⋆, we have

Et−1[∥Xt+1 − x⋆∥2] ≤ Et−1[∥Xt − x⋆∥2 − γtηt+1(∥V(Xt+ 1
2
)∥2 + ∥V(Xt− 1

2
)∥2)

+ 3γtηt+1NL2((η2t + γ2
t )∥V̂t− 1

2
∥2 + (γt−1)

2∥V̂t− 3
2
∥2)

+ (γ2
t ηt+1 +Nηt+1(ηt + γt)

2)L∥ξt− 1
2
∥2 + (ηt+1)

2∥V̂t+ 1
2
∥2].
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Proof. We will apply Lemma 4 to xi⋆. We first bound the variation ∥V i(Xt+ 1
2
)− V i(Xt− 1

2
)∥2 by

∥V i(Xt+ 1
2
)− V i(Xt− 1

2
)∥2 ≤ 3∥V i(Xt+ 1

2
)− V i(Xt)∥2 + 3∥V i(Xt)− V i(Xt−1)∥2

+ 3∥V i(Xt−1)− V i(Xt− 1
2
)∥2

≤ 3γ2
tL

2∥V̂t− 1
2
∥2 + 3η2tL

2∥V̂t− 1
2
∥2 + 3(γt−1)

2L2∥V̂t− 3
2
∥2. (11)

In the second inequality, we have used the Lipschitz continuity of V i and Xt+ 1
2
= Xt − γtV̂t− 1

2
to obtain

∥V i(Xt+ 1
2
)− V i(Xt)∥2 ≤ L2∥Xt+ 1

2
−Xt∥2 = 3γ2

tL
2∥V̂t− 1

2
∥2.

The terms ∥V i(Xt)− V i(Xt−1)∥2 and ∥V i(Xt−1)− V i(Xt− 1
2
)∥2 were bounded in the same way. Applying

Lemma 4 with pi ← xi⋆, plugging (11) into (10), and summing from i = 1 to N then yields

Et−1[∥Xt+1 − x⋆∥2] ≤ Et−1[∥Xt − x⋆∥2 − ηt+1⟨V(Xt+ 1
2
),Xt+ 1

2
− x⋆⟩

− γtηt+1(∥V(Xt+ 1
2
)∥2 + ∥V(Xt− 1

2
)∥2)

+ 3γtηt+1NL2((η2t + γ2
t )∥V̂t− 1

2
∥2 + (γt−1)

2∥V̂t− 3
2
∥2)

+ (γ2
t ηt+1 +Nηt+1(ηt + γt)

2)L∥ξt− 1
2
∥2 + (ηt+1)

2∥V̂t+ 1
2
∥2].

To conclude, we drop −ηt+1⟨V(Xt+ 1
2
),Xt+ 1

2
− x⋆⟩ which is non-positive by Assumption 2.

Quasi-Descent Inequalities for OptDA+. Similarly, we establish quasi-descent inequalities for OptDA+
that will be used for both non-adaptive and adaptive analyses.

Lemma 6 (Individual quasi-descent inequality for OptDA+). Let Assumptions 1 and 3 hold and all players
run (OptDA+) with non-increasing learning rates satisfying Assumption 5. Then, for all i ∈ N , t ≥ 2, and
pi ∈ X i, it holds

Et−1

[
∥Xi

t+1 − pi∥2

ηit+1

]
≤ Et−1

[
∥Xi

t − pi∥2

ηit
+

(
1

ηit+1

− 1

ηit

)
∥Xi

1 − pi∥2

− 2⟨V i(Xt+ 1
2
), Xi

t+ 1
2
− pi⟩

− γit(∥V i(Xt+ 1
2
)∥2 + ∥V i(Xt− 1

2
)∥2)

+ γit∥V i(Xt+ 1
2
)− V i(Xt− 1

2
)∥2

+min

(
−
∥Xi

t −Xi
t+1∥2

2ηit
+ ηit∥V̂ i

t+ 1
2
∥2, 0

)
+ (γit)

2L∥ξit− 1
2
∥2 + L∥ξt− 1

2
∥2(ηt+γt)

2 + ηit∥V̂ i
t+ 1

2
∥2
]
. (12)

Proof. This is an immediate by combining Corollary 2 and Lemma 3. We just notice that as γit is Ft−1-
measurable, we have Et−1[γ

i
t⟨V̂ i

t+ 1
2

, V̂ i
t− 1

2

⟩] = γit Et−1[⟨V̂ i
t+ 1

2

, V̂ i
t− 1

2

⟩].

Lemma 7 (Global quasi-descent inequality for OptDA+). Let Assumptions 1–3 hold and all players run
(OptDA+) with non-increasing learning rates satisfying Assumption 5. Then, for all t ≥ 2 and x⋆ ∈ X⋆, if
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ηt ≤ γt, we have

Et−1[∥Xt+1 − x⋆∥21/ηt+1
] ≤ Et−1[∥Xt − x⋆∥21/ηt

+ ∥X1 − x⋆∥21/ηt+1−1/ηt

− ∥V(Xt+ 1
2
)∥2γt

− ∥V(Xt− 1
2
)∥2γt

− ∥Xt −Xt+1∥21/(2ηt)
+ 3∥V(Xt)−V(Xt−1)∥2γt

+ 3L2(∥γt∥1∥V̂t− 1
2
∥2γ2

t
+ ∥γt−1∥1∥V̂t− 3

2
∥2(γt−1)

2)

+ (4N + 1)L∥ξt− 1
2
∥2γ2

t
+ 2∥V̂t+ 1

2
∥2ηt

]. (13)

Proof. The proof is proved in the same way as Lemma 5 but instead of Lemma 4 we make use of Lemma 6
with

min

(
−
∥Xi

t −Xi
t+1∥2

2ηit
+ ηit∥V̂ i

t+ 1
2
∥2, 0

)
≤ −
∥Xi

t −Xi
t+1∥2

2ηit
+ ηit∥V̂ i

t+ 1
2
∥2.

Moreover, as there is not a simple expression for ∥Xt −Xt+1∥, in the place of (11) we use

∥V i(Xt+ 1
2
)− V i(Xt− 1

2
)∥2 ≤ 3L2∥V̂t− 1

2
∥2γ2

t
+ 3L2∥V̂t− 3

2
∥2(γt−1)

2 + 3∥V i(Xt)− V i(Xt−1)∥2. (14)

To obtain (13), we further use ηt ≤ γt and ∥γt∥1 ≤ ∥γt−1∥1.

Remark 2. The players can take different learning rates in OptDA+ because in the quasi-descent inequality
(12), there is no learning rate in front of ⟨V i(Xt+ 1

2
), Xi

t+ 1
2

− pi⟩. Take pi ← xi⋆ and summing from i = 1 to
N we get directly ⟨V(Xt+ 1

2
),Xt+ 1

2
− x⋆⟩ which is non-negative according to Assumption 2. While it is also

possible to put (10) in the form of Lemma 1, we are not able to control the sum of (1/ηit+1 − 1/ηit)∥Xi
t − pi∥2

as explained in Section 4.

F Regret Analysis with Predetermined Learning Rates

In this section, we tackle the regret analysis of OG+ and OptDA+ run with non-adaptive learning rates. We
prove bounds on the pseudo-regret maxpi∈Ki E[RegiT (pi)] and on the sum of the expected magnitude of the
noiseless feedback

∑T
t=1 E[∥V(Xt+ 1

2
)∥2]. In fact, in our analysis, building bounds on

∑T
t=1 E[∥V(Xt+ 1

2
)∥2] is

a crucial step for deriving bounds on the pseudo-regret.
Moreover, as the loss functions are convex in their respective player’s action parameter, a player’s regret can
be bounded by its linearized counterpart, as stated in the following lemma.

Lemma 8. Let Assumption 1 holds. Then, for all i ∈ N , any sequence of actions (xt)t∈N, and all reference
point pi ∈ X i, we have

RegiT (p
i) ≤

T∑
t=1

⟨V i(xt), x
i
t − pi⟩

We therefore focus exclusively on bounding the linearized regret in the sequel.

F.1 Bounds for OG+

In this part we will simply assume the learning rates to be F1-measurable, a technical detailed that we ignored
in the main text. The global quasi-descent inequality of OG+ introduced in Lemma 5 indeed allows us to
bound several important quantities, as shown below.

Proposition 5 (Bound on sum of squared norms). Let Assumptions 1–3 hold and all players run (OG+)
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with learning rates described in Theorem 1. Then, for all T ∈ N and x⋆ ∈ X⋆, we have

E[∥Xt+1 − x⋆∥2] +
1

2

T∑
t=1

γtηt+1 E[∥V(Xt+ 1
2
)∥2]

≤ ∥X1 − x⋆∥2 + γ1η2∥V (X1)∥2 +
T∑
t=1

(
9γ3
t ηt+1NL2 + γ2

t ηt+1(4N + 1)L+ (ηt+1)
2
)
Nσ2

A.

Accordingly,
∑∞
t=1 γtηt+1 E[∥V(Xt+ 1

2
)∥2] <∞.

Proof. Since V̂1/2 = 0, we have X3/2 = X1 and with X2 = X1 − η2V̂3/2 we obtain

∥X2 − x⋆∥2 = ∥X1 − x⋆∥2 − 2η2⟨V̂3/2,X3/2 − x⋆⟩+ η22∥V̂3/2∥2.

Taking expectation then gives

E[∥X2 − x⋆∥2] = E[∥X1 − x⋆∥2 − 2η2⟨V(X3/2),X3/2 − x⋆⟩+ η22∥V̂3/2∥2]
≤ E[∥X1 − x⋆∥2 + η22∥V̂3/2∥2], (15)

where we have used Assumption 2 to deduce that ⟨V(X3/2),X3/2 − x⋆⟩ ≥ 0. Taking total expectation of the
inequality of Lemma 5, summing from t = 2 to T , and further adding (15) gives

E

[
∥XT+1 − x⋆∥2 +

T∑
t=2

γtηt+1(∥V(Xt+ 1
2
)∥2 + ∥V(Xt− 1

2
)∥2)

]
︸ ︷︷ ︸

(A)

≤ E

[
∥X1 − x⋆∥2 +

T∑
t=1

(ηt+1)
2∥V̂t+ 1

2
∥2 +

T∑
t=2

3γtηt+1(η
2
t + γ2

t )NL2∥V̂t− 1
2
∥2

+

T∑
t=2

3γtηt+1(γt−1)
2NL2∥V̂t− 3

2
∥2 +

T∑
t=2

(
γ2
t ηt+1 +Nηt+1(ηt + γt)

2
)
L∥ξt− 1

2
∥2
]
.

We use Assumption 3 to bound the noise terms. For example, we have

E[∥ξt+ 1
2
∥2] =

N∑
i=1

E[∥ξit+ 1
2
∥2] ≤

N∑
i=1

(σ2
A + σ2

M∥V i(xt)∥2) = σ2
M∥V(Xt+ 1

2
)∥2 +Nσ2

A. (16)

Subsequently,

E[(ηt+1)
2∥V̂t+ 1

2
∥2] = (ηt+1)

2 E[∥V(Xt+ 1
2
)∥2 + ∥ξt+ 1

2
∥2]

≤ (ηt+1)
2
(
E[(1 + σ2

M )∥V(Xt+ 1
2
)∥2] +Nσ2

A

)
.
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Along with the fact that the learning rates are non-increasing and ηs ≤ γs for all s ∈ N, we get

(A) ≤ E

[
∥X1 − x⋆∥2 +

T∑
t=1

(ηt+1)
2
(
(1 + σ2

M )∥V(Xt+ 1
2
)∥2 +Nσ2

A

)
+

T∑
t=2

(
6γ3
t ηt+1NL2(1 + σ2

M ) + γ2
t ηt+1(4N + 1)Lσ2

M

)
∥V(Xt− 1

2
)∥2

+

T∑
t=2

(
6γ3
t ηt+1NL2 + γ2

t ηt+1(4N + 1)L
)
Nσ2

A

+

T∑
t=3

3(γt−1)
3ηtNL2

(
(1 + σ2

M )∥V(Xt− 3
2
)∥2 +Nσ2

A

)]
. (17)

Re-indexing the summations and adding positive terms to the right-hand side (RHS) of the inequality, we
deduce

(A) ≤ E

[
∥X1 − x⋆∥2 +

T∑
t=2

(
9γ3
t ηt+1NL2(1 + σ2

M ) + γ2
t ηt+1(4N + 1)Lσ2

M

)
∥V(Xt− 1

2
)∥2

+

T∑
t=1

(ηt+1)
2(1 + σ2

M )∥V(Xt+ 1
2
)∥2

+

T∑
t=1

(
(ηt+1)

2 + 9γ3
t ηt+1NL2 + γ2

t ηt+1(4N + 1)L
)
Nσ2

A

]
.

On the other hand, we have

(A) = ∥XT+1 − x⋆∥2 − γ1η2∥V(X3/2)∥2

+

T∑
t=1

γtηt+1 E[∥V(Xt+ 1
2
)∥2] +

T∑
t=2

γtηt+1 E[∥V(Xt− 1
2
)∥2].

Combining the above two (in)equalities, rearranging, and using X3/2 = X1 leads to

E[∥XT+1 − x⋆∥2] +
T∑
t=1

γtηt+1

(
1− (1 + σ2

M )ηt+1

γt

)
E[∥V(Xt+ 1

2
)∥2]

+

T∑
t=2

γtηt+1(1− at(1 + σ2
M )− btσ

2
M )E[∥V(Xt− 1

2
)∥2]

≤ ∥X1 − x⋆∥2 + γ1η2∥V (X1)∥2 +
T∑
t=1

γtηt+1

(
ηt+1

γt
+ at + bt

)
Nσ2

A,

where at = 9γ2
tNL2 and bt = γt(4N + 1)L. To conclude, we notice that with the learning rate choices of

Theorem 1, it always holds 1−(1+σ2
M )(ηt+1/γt) ≥ 1/2, 1−at(1+σ2

M )−btσ2
M ≥ 0, and

∑+∞
t=1 γtηt+1(ηt+1/γt+

at + bt)Nσ2
A < +∞.

From Proposition 5 we obtain immediately the bounds on
∑T
t=1 E[∥V(Xt+ 1

2
)∥2] of OG+ as claimed in

Section 6.

Theorem 8. Let Assumptions 1–3 hold and all players run (OG+) with non-increasing learning rate sequences
(γt)t∈N and (ηt)t∈N satisfying (4). We have

(a) If there exists q ∈ [0, 1/4] such that γt = O(1/(t
1
4

√
log t)), γt = Ω(1/t

1
2−q), and ηt = Θ(1/(

√
t log t)),
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then
T∑
t=1

E[∥V(Xt+ 1
2
)∥2] = Õ

(
T 1−q)

(b) If the noise is multiplicative (i.e., σA = 0) and the learning rates are constant γt ≡ γ, ηt ≡ η, then

T∑
t=1

E[∥V(Xt+ 1
2
)∥2] ≤ 2 dist(X1,X⋆)2

γη
+ 2∥V(X1)∥2.

In particular, if the equalities hold in (4), then the above is in O(N3L2(1 + σ2
M )3).

Proof. Let x⋆ = ΠX⋆
(X1). By the choice of our learning rates, the constant

C := ∥X1 − x⋆∥2 + γ1η2∥V (X1)∥2 +
+∞∑
t=1

(9γ3
t ηt+1NL2 + γ2

t ηt+1(4N + 1)L+ (ηt+1)
2)Nσ2

A.

is finite. In addition, from Proposition 5 we know tat

T∑
t=1

γtηt+1 E[∥V(Xt+ 1
2
)∥2] ≤ 2C.

On the other hand since the learning rates are non-increasing, it holds

T∑
t=1

γtηt+1 E[∥V(Xt+ 1
2
)∥2] ≥ γT+1ηT+1

T∑
t=1

E[∥V(Xt+ 1
2
)∥2].

As a consequence,
T∑
t=1

E[∥V(Xt+ 1
2
)∥2] ≤ 2C

γT+1ηT+1
. (18)

The results are then immediate from our choice of learning rates.

Remark 3. In the estimation of (b) we use dist(X1,X⋆)2 = O(N) and 1/γ = O(NL(1 + σ2
M )). We can get

improved dependence on N if the noises of the players are supposed to be mutually independent conditioned

on the past. In fact, in this case we only require γ ≤ min

(
1

3L
√

2N(1+σ2
M )

, 1
8Lσ2

M

)
.

Bounding Linearized Regret. We proceed to bound the linearized regret. The following lemma is a
direct consequence of the individual quasi-descent inequality of Lemma 4.

Lemma 9 (Bound on linearized regret). Let Assumptions 1–3 hold and all players run (OG+) with learning
rates described in Theorem 1. Then, for all i ∈ N , T ∈ N, and pi ∈ X i, we have

T∑
t=1

E[⟨V i(Xt+ 1
2
), Xi

t+ 1
2
− pi⟩] ≤ E

[
∥Xi

1 − pi∥2

2η2
+

T∑
t=2

(
1

2ηt+1
− 1

2ηt

)
∥Xi

t − pi∥2

+

T∑
t=1

(
3γt
4
∥V(Xt+ 1

2
)∥2 + atσ

2
A

2

)]
,

where at = 9γ3
tL

2N + γ2
t (4N + 1)L+ ηt+1.

Proof. Applying Lemma 4, dividing both sides of (10) by ηt+1, rearranging, taking total expectation, and
using Assumption 3, we get

E[2⟨V i(Xt+ 1
2
), Xi

t+ 1
2
− pi⟩]
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≤ E

[
∥Xi

t − pi∥2

ηt+1
−
∥Xi

t+1 − pi∥2

ηt+1

− γt(∥V i(Xt+ 1
2
)∥2 + ∥V i(Xt− 1

2
)∥2) + γt∥V i(Xt+ 1

2
)− V i(Xt− 1

2
)∥2

+ γ2
tLσ

2
M∥V i(Xt− 1

2
)∥2 + (ηt + γt)

2Lσ2
M∥V(Xt− 1

2
)∥2 + ηt+1(1 + σ2

M )∥V i(Xt+ 1
2
)∥2

+ γ2
tLσ

2
A + (ηt + γt)

2LNσ2
A + ηt+1σ

2
A

]

≤ E

[
∥Xi

t − pi∥2

ηt+1
−
∥Xi

t+1 − pi∥2

ηt+1

+ 3γ3
tL

2∥V̂t− 1
2
∥2 + 3γtη

2
tL

2∥V̂t− 1
2
∥2 + 3γt(γt−1)

2L2∥V̂t− 3
2
∥2

+ 5γ2
tLσ

2
M∥V(Xt− 1

2
)∥2 + ηt+1(1 + σ2

M )∥V(Xt+ 1
2
)∥2 + γ2

t (4N + 1)Lσ2
A + ηt+1σ

2
A

]

≤ E

[
∥Xi

t − pi∥2

ηt
+

(
1

ηt+1
− 1

ηt

)
∥Xi

t − pi∥2 −
∥Xi

t+1 − pi∥2

ηt+1

+
γt
2
∥V(Xt+ 1

2
)∥2 + 5γt

6
∥V(Xt− 1

2
)∥2 + 3(γt−1)

3L2∥V̂t− 3
2
∥2

+ 6γ3
tL

2Nσ2
A + γ2

t (4N + 1)Lσ2
A + ηt+1σ

2
A

]
.

In the last inequality we have used η2t ≤ γ2
t ≤ 1/(18L2(1 + σ2

M )), 5γtLσ2
M ≤ γ1(4N + 1)Lσ2

M ≤ 1/2 and
ηt+1(1 + σ2

M ) ≤ ηt(1 + σ2
M ) ≤ γt/2. As for the ∥V̂t− 3

2
∥2 term, we recall that V̂1/2 = 0 and otherwise its

expectation can again be bounded using Assumption 3. Summing the above inequality from t = 2 to T and
dividing both sides by 2, we then obtain

T∑
t=2

E[⟨V i(Xt+ 1
2
), Xi

t+ 1
2
− pi⟩] ≤ E

[
∥Xi

2 − pi∥2

2η2
+

T∑
t=2

(
1

2ηt+1
− 1

2ηt

)
∥Xi

t − pi∥2

+

T∑
t=2

1

4

(
γt∥V(Xt+ 1

2
)∥2 + 2γt∥V(Xt− 1

2
)∥2

+ 18γ3
tL

2Nσ2
A + γ2

t (8N + 2)Lσ2
A + 2ηt+1σ

2
A

)]
. (19)

For t = 1, since Xi
3/2 = Xi

1 and Xi
2 = Xi

1 − η2V̂
i
3/2, we have

∥Xi
2 − pi∥2 = ∥X1

t − pi∥2 − 2η2⟨V̂ i
3/2, X

i
3/2 − pi⟩+ η22∥V̂ i

3/2∥
2.

Taking expectation then gives

E[∥Xi
2 − pi∥2] ≤ E[∥Xi

1 − pi∥2 − 2η2⟨V i(X3/2), X
i
3/2 − pi⟩+ η22(1 + σ2

M )∥V i(X3/2)∥2 + η22σ
2
A]. (20)

Combining (19) and (20) and bounding η2(1 + σ2
M )∥V i(X3/2)∥2 ≤ (γt/2)∥V(X3/2)∥2, we get the desired

inequality.

With Lemma 9 and Proposition 5, we are now ready to prove our result concerning the regret of OG+. The
main difficulty here consists in controlling the sum of (1/(2ηt+1)− 1/(2ηt))E[∥Xi

t − pi∥2] when the learning
rates are not constant.

Theorem 9. Let Assumptions 1–3 hold and all players run (OG+) with non-increasing learning rate sequences
(γt)t∈N and (ηt)t∈N satisfying (4). For any i ∈ N and bounded set Ki ⊂ X i with R ≥ suppi∥Xi

1 − pi∥, we
have:
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(a) If γt = O(1/(t
1
4

√
log t)) and ηt = Θ(1/(

√
t log t)), then

max
pi∈Ki

E

[
T∑
t=1

⟨V i(Xt+ 1
2
), Xi

t+ 1
2
− pi⟩

]
= Õ

(√
T
)
.

(b) If the noise is multiplicative (i.e., σA = 0) and the learning rates are constant γt ≡ γ, ηt ≡ η, then

max
pi∈Ki

E

[
T∑
t=1

⟨V i(Xt+ 1
2
), Xi

t+ 1
2
− pi⟩

]
≤ R2

2η
+

2

η
(dist(X1,X⋆)2 + γη∥V(X1)∥2).

In particular, if the equalities hold in (4), the above is in O(N2L(1 + σ2
M )2).

Proof. Let x⋆ = ΠX⋆
(X1) be the projection of X1 onto the solution set. For any pi ∈ Ki, it holds

T∑
t=2

(
1

2ηt+1
− 1

2ηt

)
∥Xi

t − pi∥2

≤
T∑
t=2

(
1

ηt+1
− 1

ηt

)(
∥Xi

t − xi⋆∥2 + ∥xi⋆ − pi∥2
)

≤
T∑
t=2

(
1

ηt+1
− 1

ηt

)(
∥Xt − x⋆∥2 + ∥xi⋆ −Xi

1 +Xi
1 − pi∥2

)
≤
(

1

ηT+1
− 1

η2

)(
2∥Xi

1 − xi⋆∥2 + 2R2
)
+

T∑
t=2

(
1

ηt+1
− 1

ηt

)
∥Xt − x⋆∥2. (21)

To proceed, with Proposition 5, we know that for C defined in the proof of Theorem 8, we have for all t ∈ N

E[∥Xt+1 − x⋆∥2] +
t∑

s=1

γsηs+1

2
E[∥V(Xs+ 1

2
)∥2] ≤ C (22)

We can therefore write

T∑
t=2

(
1

ηt+1
− 1

ηt

)
E[∥Xt − x⋆∥2] ≤

T∑
t=2

(
1

ηt+1
− 1

ηt

)
C ≤ C

ηT+1
. (23)

Since ηT+1 ≤ ηt+1 for all t ≤ T . From (22) we also deduce

T∑
t=1

γt E[∥V(Xt+ 1
2
)∥2] ≤ 1

ηT+1

T∑
t=1

γtηt E[∥V(Xt+ 1
2
)∥2] ≤ 2C

ηT+1
. (24)

Plugging (21), (23), and (24) into Lemma 9, we obtain

T∑
t=1

E[⟨V i(Xt+ 1
2
), Xi

t+ 1
2
− pi⟩] ≤ E

[
2 dist(X1,X⋆)2 + 2R2

ηT+1
+

3C

ηT+1
+

T∑
t=1

atσ
2
A

2

]
.

The result is now immediate from γt = O(1/(t
1
4

√
log t)) and ηt = Θ(1/(

√
t log t)).

(b) Let pi ∈ Ki. With σ2
A = 0, constant learning rates, and ∥Xi

1 − pi∥ ≤ R2, Lemma 9 gives

T∑
t=1

E[⟨V i(Xt+ 1
2
), Xi

t+ 1
2
− pi⟩] ≤ E

[
R2

2η
+

T∑
t=1

3γ

4
∥V(Xt+ 1

2
)∥2
]
,

We conclude immediately with the help of Theorem 8(b).
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F.2 Bounds for OptDA+

For the analysis of OptDA+, we first establish two preliminary bounds respectively for the linearized regret
and for the sum of the squared operator norms. These bounds are used later for deriving more refined bounds
in the non-adaptive and the adaptive case. We use the notation ηi1 = ηi2.

Lemma 10 (Bound on linearized regret). Let Assumptions 1 and 3 hold and all players run (OptDA+) with
non-increasing learning rates satisfying Assumption 5 and ηt ≤ γt for all t ∈ N. Then, for all i ∈ N , T ∈ N,
and pi ∈ X i, we have

E

[
T∑
t=1

⟨V i(Xt+ 1
2
), Xi

t+ 1
2
− pi⟩

]
≤ E

[
∥Xi

1 − pi∥2

2ηiT+1

+
1

2

T∑
t=1

ηit∥V̂ i
t+ 1

2
∥2

+

T∑
t=2

γitL
2

(
3∥V̂t− 1

2
∥2γ2

t
+

3

2
∥Xt −Xt−1∥2

)

+
1

2

T∑
t=2

((γit)
2L∥ξit− 1

2
∥2 + 4L∥ξt− 1

2
∥2γ2

t
)

]
. (25)

Proof. Applying Lemma 6, dropping non-positive terms on the RHS of (12), using

min

(
−
∥Xi

t −Xi
t+1∥2

2ηit
+ ηit∥V̂ i

t+ 1
2
∥2, 0

)
≤ 0

and taking total expectation gives

E

[
∥Xi

t+1 − pi∥2

ηit+1

]
≤ E

[
∥Xi

t − pi∥2

ηit
+

(
1

ηit+1

− 1

ηit

)
∥Xi

1 − pi∥2

− 2⟨V i(Xt+ 1
2
), Xi

t+ 1
2
− pi⟩+ γit∥V i(Xt+ 1

2
)− V i(Xt− 1

2
)∥2

+ (γit)
2L∥ξit− 1

2
∥2 + L∥ξt− 1

2
∥2(ηt+γt)

2 + ηit∥V̂ i
t+ 1

2
∥2
]
. (26)

The above inequality holds for t ≥ 2. As for t = 1, we notice that with Xi
2 = Xi

1 − ηi2V̂
i
3/2, we have in fact

∥Xi
2 − pi∥2 = ∥Xi

1 − pi∥2 − 2ηi2⟨V̂ i
3/2, X

i
1 − pi⟩+ (ηi2)

2∥V̂ i
3/2∥

2.

As Xi
3/2 = Xi

1 = 0 and ηi1 = ηi2, the above implies

E
[
⟨V i(Xi

3/2), X
i
3/2 − pi⟩

]
= E

[
∥Xi

1 − pi∥2

2ηi2
− ∥X

i
2 − pi∥2

2ηi2
+

ηi1∥V̂ i
3/2∥

2

2

]
. (27)

Summing (26) from t = 2 to T , dividing by 2, adding (27), and using ηt ≤ γt leads to

T∑
t=1

E[⟨V i(Xt+ 1
2
), Xi

t+ 1
2
− pi⟩] ≤ 1

2
E

[
∥Xi

1 − pi∥2

ηiT+1

+

T∑
t=1

ηit∥V̂ i
t+ 1

2
∥2

+

T∑
t=2

γit∥V i(Xt+ 1
2
)− V i(Xt− 1

2
)∥2

+

T∑
t=2

((γit)
2L∥ξit− 1

2
∥2 + 4L∥ξt− 1

2
∥2γ2

t
)

]
.
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Similar to (11), we can bound the difference term by

∥V i(Xt+ 1
2
)− V i(Xt− 1

2
)∥2 ≤ 3L2∥V̂t− 1

2
∥2γ2

t
+ 3L2∥V̂t− 3

2
∥2(γt−1)

2 + 3L2∥Xt −Xt−1∥2.

Combining the above two inequalities and using V̂1/2 = 0 gives the desired inequality.

Lemma 11 (Bound on sum of squared norms). Let Assumptions 1–3 hold and all players run (OptDA+)
with non-increasing learning rates satisfying Assumption 5 and ηt ≤ γt for all t ∈ N. Then, for all T ∈ N
and x⋆ ∈ X⋆, we have

T∑
t=2

E[∥V(Xt+ 1
2
)∥2γt

+ ∥V(Xt− 1
2
)∥2γt

]

≤ E

[
∥X1 − x⋆∥21/ηT+1

+

T∑
t=1

(
3∥V(Xt)−V(Xt+1)∥2γt

− ∥Xt −Xt+1∥21/(2ηt)

)
+

T∑
t=2

6∥γt∥1L2∥V̂t− 1
2
∥2γ2

t
+

T∑
t=2

(4N + 1)L∥ξt− 1
2
∥2γ2

t
+

T∑
t=1

2∥V̂t+ 1
2
∥2ηt

]
. (28)

Proof. This is a direct consequence of Lemma 7. In fact, taking total expectation of (13) and summing from
t = 2 to T gives already

T∑
t=2

E[∥V(Xt+ 1
2
)∥2γt

+ ∥V(Xt− 1
2
)∥2γt

]

≤ E

[
∥X2 − x⋆∥21/η2

+ ∥X1 − x⋆∥21/ηT+1−1/η2

+

T∑
t=2

(3∥V(Xt)−V(Xt−1)∥2γt
− ∥Xt −Xt+1∥21/(2ηt)

)

+

T∑
t=2

6∥γt∥1L2∥V̂t− 1
2
∥2γ2

t
+

T∑
t=2

(4N + 1)L∥ξt− 1
2
∥2γ2

t
+

T∑
t=2

2∥V̂t+ 1
2
∥2ηt

]
. (29)

We have in particular used V̂1/2 = 0 to bound

T∑
t=2

3L2(∥γt∥1∥V̂t− 1
2
∥2γ2

t
+ ∥γt−1∥1∥V̂t− 3

2
∥2(γt−1)

2)

=

T∑
t=2

3∥γt∥1L2∥V̂t− 1
2
∥2γ2

t
+

T∑
t=3

∥γt∥13NL2∥V̂t− 1
2
∥2γ2

t

≤
T∑
t=2

6∥γt∥1L2∥V̂t− 1
2
∥2γ2

t
.

To obtain (28), we further bound

T∑
t=2

3∥V(Xt)−V(Xt−1)∥2γt
=

T−1∑
t=1

3∥V(Xt)−V(Xt+1)∥2γt+1
≤

T∑
t=1

3∥V(Xt)−V(Xt+1)∥2γt
(30)

For t = 1, we use (27) with pi ← xi⋆; that is

∥Xi
2 − xi⋆∥2

ηi2
=
∥Xi

1 − xi⋆∥2

ηi2
− 2⟨V i(X3/2) + ξi3/2, X

i
1 − xi⋆⟩+ ηi1∥V̂ i

3/2∥
2.
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Since X3/2 = X1, summing the above inequality from i = 1 to N leads to

∥X2 − x⋆∥21/η2
= ∥X1 − x⋆∥21/η2

− 2⟨V(X3/2) + ξ3/2,X3/2 − x⋆⟩+ ∥V̂3/2∥2η1
. (31)

Assumptions 2 and 3 together ensure

E[⟨V(X3/2) + ξ3/2,X3/2 − x⋆⟩] = ⟨V(X3/2),X3/2 − x⋆⟩ ≥ 0.

Subsequently,
E[∥X2 − x⋆∥21/η2

] ≤ E[∥X1 − x⋆∥21/η2
+ ∥V̂ i

3/2∥
2
η2
]

≤ E[∥X1 − x⋆∥21/η2
+ 2∥V̂ i

3/2∥
2
η1
− ∥X1 −X2∥2(1/2η1)

]. (32)

Combining (29), (30), and (32) gives exactly (28).

F.2.1 Dedicated Analysis for Non-Adaptive OptDA+

In this part, we show how the non-adaptive learning rates suggested in Theorem 2 helps to achieve small
regret and lead to fast convergence of the norms of the payoff gradients.

Proposition 6 (Bound on sum of squared norms). Let Assumptions 1–3 hold and all players run (OptDA+)
with learning rates described in Theorem 2. Then, for all T ∈ N and x⋆ ∈ X⋆, we have

1

2

T∑
s=1

E[∥V(Xt+ 1
2
)∥2γt

] +

T∑
t=1

21∥γ1∥∞NL2 E[∥Xt −Xt+1∥2]

≤ ∥X1 − x⋆∥21/ηT+1
+ ∥V(X1)∥2γ1

+

T∑
t=1

(
6∥γt∥3∞NL2 + ∥γt∥2∞(4N + 1)L+ 2∥ηt∥∞

)
Nσ2

A

Proof. We first apply Lemma 11 to obtain (28). We bound the expectations of the following three terms
separately.

At = 3∥V(Xt)−V(Xt+1)∥2γt
− ∥Xt −Xt+1∥21/(2ηt)

,

Bt = 6∥γt∥1L2∥V̂t− 1
2
∥2γ2

t
+ (4N + 1)L∥ξt− 1

2
∥2γ2

t
, Ct = 2∥V̂t+ 1

2
∥2ηt

.

To bound At, we first use ηt ≤ γt/(4(1 + σ2
M )) ≤ ∥γ1∥∞/(4(1 + σ2

M )) to get

∥Xt −Xt+1∥21/(2ηt)
≥ 2(1 + σ2

M )

∥γ1∥∞
∥Xt −Xt+1∥2.

Moreover, with ∥γ1∥2∞ ≤ 1/(12NL2(1 + σ2
M )) we indeed have

2(1 + σ2
M )

∥γ1∥∞
≥ 24NL2(1 + σ2

M )2∥γ1∥∞ ≥ 24NL2∥γ1∥∞.

On the other hand, with the Lipschitz continuity of (V i)i∈N it holds

3∥V(Xt)−V(Xt+1)∥2γt
≤

N∑
i=1

3γitL
2∥Xt −Xt+1∥2 ≤ 3∥γ1∥∞NL2∥Xt −Xt+1∥2.

Combining the above inequalities we deduce that At ≤ −21∥γ1∥∞NL2∥Xt −Xt+1∥2 and accordingly

E[At] ≤ E[−21∥γ1∥∞NL2∥Xt −Xt+1∥2]. (33)

We proceed to bound E[Bt]. The exploration learning rates γt being Ft−1-measurable, using Assumption 3
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and the law of total expectation, we get

E[Bt] = E [Et−1[6∥γt∥1L2∥V̂t− 1
2
∥γ2

t
+ (4N + 1)L∥ξt− 1

2
∥2γt

]]

= E

[
N∑
i=1

(
6∥γt∥1(γit)2L2 Et−1[∥V̂ i

t− 1
2
∥2] + (γit)

2(4N + 1)LEt−1[∥ξit− 1
2
∥2]
)]

≤ E

[
6∥γt∥2∞NL2(1 + σ2

M )∥V(Xt− 1
2
)∥2γt

+ ∥γt∥∞(4N + 1)Lσ2
M∥V(Xt− 1

2
)∥2γt

+ (6∥γt∥3∞NL2 + ∥γt∥2∞(4N + 1)L)Nσ2
A

]
. (34)

Similarly, ηt+1 being deterministic and in particular Ft-measurable, we have

E[Ct] = E[Et[2∥V̂t+ 1
2
∥2ηt

]] ≤ E

[
2(1 + σ2

M )∥V(Xt+ 1
2
)∥2ηt

+ 2∥ηt∥∞Nσ2
A

]
. (35)

Putting together (28), (33), (34), and (35), we get

T∑
t=2

E[∥V(Xt+ 1
2
)∥2γt−2(1+σ2

M )ηt
+ (1− at(1 + σ2

M )− btσ
2
M )∥V(Xt− 1

2
)∥2γt

]

≤ E

[
∥X1 − x⋆∥21/ηT+1

+ 2(1 + σ2
M )∥V(X3/2)∥2η1

−
T∑
t=1

21∥γ1∥∞NL2∥Xt −Xt+1∥2

+

T∑
t=1

(at + bt + 2∥ηt∥∞)Nσ2
A

]
,

where at = 6∥γt∥3∞NL2 and bt = ∥γt∥2∞(4N + 1)L. We conclude by using X3/2 = X1 and noticing that
under our learning rate requirement it is always true that 1− 6∥γt∥2∞NL2(1+σ2

M )−∥γt∥∞(4N +1)Lσ2
M ≥ 0

and γt − 2(1 + σ2
M )ηt ≥ γt/2.

Remark 4. We notice that in the analysis, we can replace the common Lipschitz constant by the ones that
are proper to each player (i.e., V i is Li-Lipschitz continuous) when bounding Bt. This is however hot the
case for our bound on At, unless we bound directly γit(L

i)2 by a constant.

Again, from Proposition 6 we obtain immediately the bounds on
∑T
t=1 E[∥V(Xt+ 1

2
)∥2] of non-adaptive

OptDA+ as claimed in Section 6.

Theorem 10. Let Assumptions 1–3 hold and all players run (OptDA+) with non-increasing learning rate
sequences (γit)t∈N and (ηit)t∈N satisfying (5). We have

(a) If there exists q ∈ [0, 1/4] such that γjt = O(1/t
1
4 ), γjt = Ω(1/t

1
2−q), and ηjt = Θ(1/

√
t) for all j ∈ N ,

then
T∑
t=1

E[∥V(Xt+ 1
2
)∥2] = O

(
T 1−q)

(b) If the noise is multiplicative (i.e., σA = 0) and the learning rates are constant γt ≡ γ, ηt ≡ η, then

T∑
t=1

E[∥V(Xt+ 1
2
)∥2] ≤ 2

mini∈N γi

(
dist1/η(X1,X⋆)2 + ∥V(X1)∥2γt

)
In particular, if the equalities hold in (5), then the above is in O(N3L2(1 + σ2

M )3).

Proof. Let us define at = 6∥γt∥3∞NL2 + ∥γt∥2∞(4N + 1)L+ 2∥ηt∥∞. From Proposition 6 we know that for
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all x⋆ ∈ X⋆, it holds

T∑
s=1

E[∥V(Xt+ 1
2
)∥2γt/2

]] ≤ ∥X1 − x⋆∥21/ηT+1
+ ∥V(X1)∥2γ1

+

T∑
t=1

atNσ2
A,

Since the learning rates are decreasing, we can lower bound γt by γt ≥ γT ≥ mini∈N γiT . Accordingly,

T∑
s=1

E[∥V(Xt+ 1
2
)∥2]] ≤ 2

mini∈N γiT

(
∥X1 − x⋆∥21/ηT+1

+ ∥V(X1)∥2γ1
+

T∑
t=1

atNσ2
A

)
, (36)

The result then follows immediately from our learning rate choices. For (a), we observe that with ∥γt∥∞ =

O(1/t 1
4 ) and ∥ηt∥∞ = O(1/

√
t), we have

∑T
t=1 at = O(

√
T ), while γjt = Ω(1/t

1
2−q), and ηjt = Ω(1/

√
t)

guarantees 1/mini∈N γTt = O(T 1
2−q) and 1/mini∈N ηTt+1 = O(

√
T ). For (b), we take x⋆ = argminx∈X⋆

∥X1−
x∥1/η.

Bounding Linearized Regret. To bound the linearized regret, we refine Lemma 10 as follows.

Lemma 12 (Bound on linearized regret). Let Assumptions 1–3 hold and all players run (OptDA+) with
learning rates described in Theorem 2. Then, for all i ∈ N , T ∈ N, and pi ∈ X i, we have

E

[
T∑
t=1

⟨V i(Xt+ 1
2
), Xi

t+ 1
2
− pi⟩

]
≤ E

[
∥Xi

1 − pi∥2

2ηiT+1

+

T∑
t=1

5

8
∥V(Xt+ 1

2
)∥2γt

+

T−1∑
t=1

3∥γ1∥∞L2

2
∥Xt −Xt+1∥2

+
1

2

T∑
t=1

(
6∥γt∥3∞NL2 + ∥γt∥2∞(4N + 1)L+ ηit

)
σ2
A

]
.

Proof. Thanks to Lemma 10 and Assumption 3, we can bound[
T∑
t=1

⟨V i(Xt+ 1
2
), Xi

t+ 1
2
− pi⟩

]

≤ E

[
∥Xi

1 − pi∥2

2ηiT+1

+

T∑
t=2

γitL
2

(
3(1 + σ2

M )∥V(Xt− 1
2
)∥2γ2

t
+ 3∥γ2

t∥1σ2
A +

3

2
∥Xt −Xt−1∥2

)

+
1

2

T∑
t=2

(
(γit)

2L(σ2
M∥V i(Xt− 1

2
)∥2 + σ2

A) + 4L(σ2
M∥V(Xt− 1

2
)∥2γ2

t
+ ∥γ2

t∥1σ2
A)
)

+
1

2

T∑
t=1

ηit

(
(1 + σ2

M )∥V i(Xt+ 1
2
)∥2 + σ2

A

)]
.

In the following, we further bound the above inequality using i) ηit ≤ γit/(4(1 + σ2
M )), ii) γt+1 ≤ γt,

iii) αit∥V i(x)∥2 ≤ ∥V(x)∥2α for any α ∈ RN+ and x ∈ X , and iv) ∥α∥∞ = maxi∈N αi and in particular
∥α2∥1 ≤ N∥α∥2∞ for α ∈ RN+ .[

T∑
t=1

⟨V i(Xt+ 1
2
), Xi

t+ 1
2
− pi⟩

]
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≤ E

[
∥Xi

1 − pi∥2

2ηiT+1

+

T∑
t=2

3∥γt∥2∞L2
(
(1 + σ2

M )∥V(Xt− 1
2
)∥2γt

+ ∥γt∥∞Nσ2
A

)
+

1

2

T∑
t=2

(
∥γt∥∞Lσ2

M (γit∥V i(Xt− 1
2
)∥2 + 4∥V(Xt− 1

2
)∥2γt

) + ∥γt∥2∞(4N + 1)Lσ2
A

)
+

T∑
t=2

3∥γt∥∞L2

2
∥Xt −Xt−1∥2 +

1

2

T∑
t=1

(
γit
4
∥V i(Xt+ 1

2
)∥2 + ηitσ

2
A

)]

≤ E

[
∥Xi

1 − pi∥2

2ηiT+1

+

T∑
t=1

(
3∥γt∥2∞L2(1 + σ2

M ) +
5∥γt∥∞Lσ2

M

2
+

1

8

)
∥V(Xt+ 1

2
)∥2γt

+

T−1∑
t=1

3∥γ1∥∞L2

2
∥Xt −Xt+1∥2

+
1

2

T∑
t=1

(
6∥γt∥3∞NL2σ2

A + ∥γt∥2∞(4N + 1)Lσ2
A + ηitσ

2
A

) ]
.

To conclude, we notice that under that our learning rate requirements it holds that 3∥γt∥2∞L2(1 + σ2
M ) +

5∥γt∥∞Lσ2
M/2 ≤ 1/2.

Our main regret guarantees of non-adaptive OptDA+ follows from the combination of Lemma 12 and
Proposition 6.

Theorem 11. Let Assumptions 1–3 hold and all players run (OptDA+) with non-increasing learning rate
sequences (γit)t∈N and (ηit)t∈N satisfying (5). For any i ∈ N and bounded set Ki ⊂ X i with R ≥ suppi∥Xi

1−pi∥,
we have:

(a) If γjt = O(1/t
1
4 ) and ηjt = Θ(1/

√
t) for all j ∈ N , then

max
pi∈Ki

E

[
T∑
t=1

⟨V i(Xt+ 1
2
), Xi

t+ 1
2
− pi⟩

]
= O

(√
T
)
.

(b) If the noise is multiplicative (i.e., σA = 0) and the learning rates are constant γt ≡ γ, ηt ≡ η, then

max
pi∈Ki

E

[
T∑
t=1

⟨V i(Xt+ 1
2
), Xi

t+ 1
2
− pi⟩

]
≤ R2

2ηi
+

5

4

(
dist1/η(X1,X⋆)2 + ∥V(X1)∥2γ

)
.

In particular, if the equalities hold in (5), the above is in O(N2L(1 + σ2
M )2).

Proof. Let pi ∈ Ki and x⋆ = argminx∈X⋆
∥X1−x∥1/η. We define at = 6∥γt∥3∞NL2+∥γt∥2∞(4N+1)L+2∥ηt∥∞

as in the proof of Theorem 10. Combining Proposition 6 and Lemma 12, we know that

E

[
T∑
t=1

⟨V i(Xt+ 1
2
), Xi

t+ 1
2
− pi⟩

]

≤ E

[
R2

2ηiT+1

+
1

2

T∑
t=1

atσ
2
A +

5

4

(
∥X1 − x⋆∥21/ηT+1

+ ∥V(X1)∥2γ1
+

T∑
t=1

atNσ2
A

)]
.

The claims of the theorem follow immediately.

To close this section, we bound the regret of non-adaptive OptDA+ when played against arbitrary opponents.

Proposition 7. Let Assumption 3 hold and player i run (OptDA+) with non-increasing learning rates γit =

Θ(1/t
1
2−q) and ηit = Θ(1/

√
t) for some q ∈ [0, 1/4]. Then, if there exists G ∈ R+ such that supxi∈X i∥V i(xi)∥ ≤
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G, it holds for any bounded set Ki with R ≥ suppi∈Ki∥Xi
1 − pi∥ that

max
pi∈Ki

E

[
T∑
t=1

⟨V i(Xt+ 1
2
), Xi

t+ 1
2
− pi⟩

]
= O

(
R2
√
T + ((1 + σ2

M )G2 + σ2
A)T

1
2+q
)
.

Proof. Let pi ∈ Ki. From Corollary 2 and Young’s inequality we get

⟨V̂ i
t+ 1

2
, Xi

t+ 1
2
− pi⟩ ≤ ∥X

i
t − pi∥2

2ηit
−
∥Xi

t+1 − pi∥2

2ηit+1

−
∥Xi

t −Xi
t+1∥2

2ηit

+

(
1

2ηit+1

− 1

2ηit

)
∥Xi

1 − pi∥2 − γit⟨V̂ i
t+ 1

2
, V̂ i
t− 1

2
⟩+ ηit∥V̂ i

t+ 1
2
∥2

≤ R2

2ηit
−
∥Xi

t+1 − pi∥2

2ηit+1

−
∥Xi

t −Xi
t+1∥2

2ηit

+

(
1

2ηit+1

− 1

2ηit

)
∥Xi

1 − pi∥2 + γit
2
(∥V̂ i

t+ 1
2
∥2 + ∥V̂ i

t− 1
2
∥2) + ηit∥V̂ i

t+ 1
2
∥2

As Vi
1/2 = 0 and ηi1 = ηi2, summing the above from t = 1 to T gives

T∑
t=1

⟨V̂ i
t+ 1

2
, Xi

t+ 1
2
− pi⟩ ≤ ∥X

i
1 − pi∥2

2ηiT+1

−
T∑
t=1

∥Xi
t −Xi

t+1∥2

2ηit
+

T∑
t=1

(γit + ηit)∥V̂ i
t+ 1

2
∥2. (37)

Dropping the negative term and taking expectation leads to

E

[
T∑
t=1

⟨V i(Xt+ 1
2
), Xi

t+ 1
2
− pi⟩

]
≤ E

[
R2

2ηiT+1

+

T∑
t=1

(γit + ηit)((1 + σ2
M )∥V i(Xt+ 1

2
)∥2 + σ2

A)

]

≤ R2

2ηiT+1

+

T∑
t=1

(γit + ηit)((1 + σ2
M )G2 + σ2

A)

The claim then follows immediately from the choice of the learning rates.

G Regret Analysis with Adaptive Learning Rates

In this section, we tackle the regret analysis of OptDA+ run with adaptive learning rates. For ease of notation,
we introduce the following quantities3

λit =

t∑
s=1

∥V̂ i
s+ 1

2
∥2, µit =

t∑
s=1

∥Xi
s −Xi

s+1∥2.

Clearly, our adaptive learning rates (Adapt) correspond to γit = 1/(1+λit−2)
1
2−q and ηit = 1/

√
1 + λit−2 + µit−2.

As Assumption 4 assumes the noise to be bounded almost surely, whenever this assumption is used, the stated
inequalities only hold almost surely. To avoid repetition, we will not mention this explicitly in the following.
Finally, Assumption 5 is obviously satisfied by the learning rates given by (Adapt); therefore, Lemmas 10
and 11 can be effectively applied.

G.1 Preliminary Lemmas

We start by establishing several basic lemmas that will be used repeatedly in the analysis. We first state the
apparent fact that λit grows at most linearly under Assumption 4.

3For t ≤ 0, λi
t = µi

t = 0.
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Lemma 13. Let Assumption 4 hold. Then, for all i ∈ N and T ∈ N, we have

λiT ≤ 2(G2 + σ̄2)T.

Proof. Using Assumption 4, we deduce that

∥V̂ i
t+ 1

2
∥2 ≤ 2∥V i(Xt+ 1

2
)∥2 + 2∥ξit+ 1

2
∥2 ≤ 2G2 + 2σ̄2,

The claimed inequality is then immediate from the definition of λiT .

The next lemma is a slight generalization of the AdaGrad lemma [6, Lemma 3.5].

Lemma 14. Let T ∈ N, ε > 0, and q ∈ [0, 1). For any sequence of non-negative real numbers a1, . . . , aT , it
holds

T∑
t=1

at(
ε+

∑t
s=1 as

)q ≤ 1

1− q

(
T∑
t=1

at

)1−q

. (38)

Proof. The function y ∈ R+ 7→ y1−q is concave and has derivative y 7→ (1 − q)/yq. Therefore, it holds for
every y, z > 0 that

z1−q ≤ y1−q +
1− q

yq
(z − y).

For ε′ ∈ (0, ε), we apply the above inequality to y = ε′ +
∑t
s=1 as and z = ε′ +

∑t−1
s=1 as. This gives

1

1− q

(
ε′ +

t−1∑
s=1

as

)1−q

≤ 1

1− q

(
ε′ +

t∑
s=1

as

)1−q

− at(
ε′ +

∑t
s=1 as

)q
≤ 1

1− q

(
ε′ +

t∑
s=1

as

)1−q

− at(
ε+

∑t
s=1 as

)q . (39)

Moreover, at t = 1 we have

a1
(ε+ a1)q

≤ (ε′ + a1)
1−q ≤ 1

1− q
(ε′ + a1)

1−q. (40)

Summing (39) from t = 2 to T , adding (40), and rearranging leads to

T∑
t=1

at(
ε+

∑t
s=1 as

)q ≤ 1

1− q

(
ϵ′ +

T∑
t=1

at

)1−q

.

Provided that the above inequality holds for any ε′ ∈ (0, ε), we obtain (38) by taking ε′ → 0.

The above two lemmas together provide us with the following bound on the sum of the weighted squared
norms of feedback.

Lemma 15. Let Assumption 4 hold, s ∈ N0, and r ∈ [0, 1). Then, for all i ∈ N and T ∈ N, we have

T∑
t=1

∥V̂ i
t+ 1

2

∥2

(1 + λit−s)
r
≤ (λiT )

1−r

1− r
+ 2s(G2 + σ̄2).

Proof. Since 1/(1 + λit)
r ≤ 1/(1 + λit−s)

r and ∥V̂ i
t+ 1

2

∥2 ≤ 2G2 + 2σ̄2, we have(
1

(1 + λit−s)
r
− 1

(1 + λit)
r

)
∥V̂ i

t+ 1
2
∥2 ≤

(
1

(1 + λit−s)
r
− 1

(1 + λit)
r

)
2(G2 + σ̄2).
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Subsequently, it follows from Lemma 14 that

T∑
t=1

∥V̂ i
t+ 1

2

∥2

(1 + λit−s)
r
=

T∑
t=1

 ∥V̂ i
t+ 1

2

∥2

(1 + λit)
r
+

(
1

(1 + λit−s)
r
− 1

(1 + λit)
r

)
∥V̂ i

t+ 1
2
∥2


≤
T∑
t=1

∥V̂ i
t+ 1

2

∥2

(1 + λit)
r
+

T∑
t=1

(
1

(1 + λit−s)
r
− 1

(λit)
r

)
2(G2 + σ̄2)

≤ (λiT )
1−r

1− r
+

0∑
t=−s+1

2(G2 + σ̄2)

(1 + λit)
r

=
(λiT )

1−r

1− r
+ 2s(G2 + σ̄2).

We also state a variant of the above result that takes into account the feedback of all players.

Lemma 16. Let Assumption 4 hold, s ∈ N0, r ∈ [0, 1), and (αt)t∈N be a sequence of non-negative N-
dimensional vectors such that αit ≤ 1/(1 + λit−s)

r. Then, for all T ∈ N, we have

T∑
t=1

∥V̂t+ 1
2
∥2αt
≤ 2Ns(G2 + σ̄2) +

N∑
i=1

(λiT )
1−r

1− r
.

Proof. This is immediate from Lemma 15.

Both Lemma 15 and Lemma 16 are essential for our analysis as they allow us to express the sums appearing
in our analysis as a power of λit plus a constant. We end up with a technical lemma for bounding the inverse
of ηit.

Lemma 17. Let the learning rates be defined as in (Adapt). For any i ∈ N , T ∈ N, and a, b ∈ R+, we have

a

ηiT+1

− b

T∑
t=1

∥Xi
t −Xi

t+1∥2

ηit
≤ a

√
1 + λiT−1 +

a2

4b
.

Proof. On one hand, we have

a

ηiT+1

= a
√
1 + λiT−1 + µiT−1 ≤ a

√
1 + λiT−1 + a

√
µiT−1.

On the other hand, with ηit ≤ 1, it holds

b

T∑
t=1

∥Xi
t −Xi

t+1∥2

ηit
≥ b

T∑
t=1

∥Xi
t −Xi

t+1∥2 ≥ bµiT−1.

Let us define the function f : y ∈ R 7→ −by2 + ay. Then

a
√
µiT−1 − bµiT−1 ≤ max

y∈R
f(y) =

a2

4b
.

Combining the above inequalities gives the desired result.

G.2 Robustness Against Adversarial Opponents

In this part, we derive regret bounds for adaptive OptDA+ when played against adversarial opponents.
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Proposition 8. Let Assumption 4 hold and player i run (OptDA+) with learning rates (Adapt). Then, for
any bounded set Ki with R ≥ suppi∈Ki∥Xi

1 − pi∥, it holds

max
pi∈Ki

E

[
T∑
t=1

⟨V i(Xt+ 1
2
), Xi

t+ 1
2
− pi⟩

]
= O

(
((G2 + σ̄2)T )

1
2+q +R2(G+ σ̄)

√
T +R4 +G2 + σ̄2

)
.

Proof. To begin, we notice that inequality (37) that we established in the proof of Proposition 7 still holds
here for any pi ∈ Ki. Furthermore, applying Lemma 17 with a← R2/2, b← 1/2 leads to

R2

2ηiT+1

−
T∑
t=1

∥Xi
t −Xi

t+1∥2

2ηit
≤

R2
√

1 + λiT−1

2
+

R4

8
.

On the other hand, invoking Lemma 15 with either r ← 1/4 + q or r ← 1/2 guarantees that

T∑
t=1

(γit + ηit)∥V̂ i
t+ 1

2
∥2 ≤ 4(λiT )

3/4−q

3− 4q
+ 2
√

λiT + 8(G2 + σ̄2).

Putting the above inequalities together, we obtain

max
pi∈Ki

E

[
T∑
t=1

⟨V i(Xt+ 1
2
), Xi

t+ 1
2
− pi⟩

]
≤ E

R2
√
1 + λiT−1

2
+

4(λiT )
3/4−q

3− 4q
+ 2
√
λiT


+

R4

8
+ 8(G2 + σ̄2).

We conclude with the help of Lemma 13.

G.3 Smaller Regret Against Opponents with Same Learning Algorithm

We now address the more challenging part of the analysis: fast regret minimization when all players adopt
adaptive OptDA+. For this, we need to control the different terms appearing in Lemmas 10 and 11. For the
latter we build the following lemma to control the sum of some differences. As argued in Section 5, this is the
reason that we include ∥Xi

s −Xi
s+1∥2 in the definition of ηit.

Lemma 18. Let Assumptions 1 and 4 hold and the learning rates be defined as in (Adapt), then for all
T ∈ N, we have

T∑
t=1

(
3∥V(Xt)−V(Xt+1)∥2γt

− ∥Xt −Xt+1∥21/(4ηt)

)
≤ 432N3L6 + 24N2G2.

Proof. For all i ∈ N , let us define

t̄i := max

{
s ∈ {0, ..., T} : ηit ≥

1

12NL2

}
,

where we set ηi0 = 1/(12NL2) to ensure that t̄i is always well-defined. By the definition of ηit, the inequality
ηit̄i ≥ 1/(12NL2) implies µit̄i−2 ≤ 144N2L2. We next define the sets

T :=
⋃
i∈N
{t̄i − 1, t̄i}∩{1, ..., T}

38



Clearly, card(T ) ≤ 2N . With γt ≤ 1, Assumptions 1 and 4, we obtain

T∑
t=1

3∥V(Xt)−V(Xt+1)∥2γt

≤
T∑
t=1

3∥V(Xt)−V(Xt+1)∥2

=
∑

t∈[T ]\T

3∥V(Xt)−V(Xt+1)∥2 +
∑
t∈T

3∥V(Xt)−V(Xt+1)∥2

≤
∑

t∈[T ]\T

3NL2∥Xt −Xt+1∥2 +
∑
t∈T

6
(
∥V(Xt)∥2 + ∥V(Xt+1)∥2

)
≤

N∑
i=1

∑
t∈[T ]\T

3NL2∥Xi
t −Xi

t+1∥2 +
∑
t∈T

12NG2

≤
N∑
i=1

3NL2

(
t̄i−2∑
t=1

∥Xi
t −Xi

t+1∥2︸ ︷︷ ︸
µi
t̄i−2

≤144N2L2

+

T∑
t=t̄i+1

∥Xi
t −Xi

t+1∥2
)

+ 24N2G2 (41)

On the other hand, by the choice of t̄i we know that 1/ηit ≥ 12NL2 for all t ≥ t̄i + 1; hence

T∑
t=1

∥Xt −Xt+1∥21/(4ηt)
=

N∑
i=1

T∑
t=1

∥Xi
t −Xi

t+1∥2

4ηit

≥
N∑
i=1

T∑
t=t̄i+1

∥Xi
t −Xi

t+1∥2

4ηit

≥
N∑
i=1

T∑
t=t̄i+1

3NL2∥Xi
t −Xi

t+1∥2. (42)

Combining (41) and (42) gives the desired result.

With Lemma 18 and the lemmas introduced in Appendix G.1, we are in a position to provide a bound on the
expectation of the sum of the weighted squared operators norms plus the second-order path length. The next
lemma is a fundamental building block for showing faster rates of adaptive OptDA+.

Lemma 19 (Bound on sum of squared norms). Let Assumptions 1, 2 and 4 hold and all players run OptDA+
with adaptive learning rates (Adapt). Then, for all T ∈ N we have

T∑
t=1

E[∥V(Xt+ 1
2
)∥2γt

] +
1

8

T∑
t=1

E[∥Xt −Xt+1∥2] ≤ c1

N∑
i=1

E
[√

λiT

]
+ c2,

where
ρ = min

x⋆∈X⋆

max
i∈N
∥Xi

1 − xi⋆∥,

c1 = 12NL2 + 8NL+ 2L+ ρ2 + 4,

c2 = 432N3L6 + 24N2G2 + (12NL2 + 8NL+ 2L+ 8)(NG2 +Nσ̄2) +Nρ2 + 2Nρ4.

Proof. As in the proof of Proposition 6, and proceed to bound in expectation the sum of the following
quantities

At = 3∥V(Xt)−V(Xt+1)∥2γt
− ∥Xt −Xt+1∥21/(2ηt)

,

Bt = 6∥γt∥1L2∥V̂t− 1
2
∥2γ2

t
+ (4N + 1)L∥ξt− 1

2
∥2γ2

t
, Ct = 2∥V̂t+ 1

2
∥2ηt

. (43)
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Thanks to Lemma 18, we know that the sum of At can be bounded directly without taking expectation by

T∑
t=1

At =

T∑
t=1

(
3∥V(Xt)−V(Xt+1)∥2γt

− ∥Xt −Xt+1∥21/(4ηt)
− ∥Xt −Xt+1∥21/(4ηt)

)
≤ 432N3L6 + 24N2G2 −

T∑
t=1

∥Xt −Xt+1∥21/(4ηt)
.

To obtain the above inequality we have also used ηt ≤ 1. To bound E[Bt], we use E[∥ξt− 1
2
∥2
γ2

t
] ≤ E[∥V̂t− 1

2
∥2
γ2

t
]

shown in (49), ∥γt∥1 ≤ N , and Lemma 16 (as (γit+1)
2 ≤ 1/

√
1 + λit−1) to obtain

T∑
t=2

E[Bt] ≤ E

[
T∑
t=2

(6NL2 + (4N + 1)L)∥V̂t− 1
2
∥2γ2

t

]

= E

[
T−1∑
t=1

(6NL2 + (4N + 1)L)∥V̂t+ 1
2
∥2(γt+1)

2

]

≤ (6NL2 + (4N + 1)L)

(
2N(G2 + σ̄2) +

N∑
i=1

2E
[√

λiT−1

])
. (44)

Similarly, the sum of Ct can be bounded in expectation by

T∑
t=1

E[Ct] ≤ 8N(G2 + σ̄2) +

N∑
i=1

4E
[√

λiT

]
. (45)

Let us choose x⋆ = argminx∈X⋆
maxi∈N ∥Xi

1 − xi∥ so that ρ = maxi∈N ∥Xi
1 − xi⋆∥. Plugging (43), (44), and

(45) into (28) of Lemma 11, we get readily

T∑
t=2

E[∥V(Xt+ 1
2
)∥2γt

+ ∥V(Xt− 1
2
)∥2γt

] +

T∑
t=1

E[∥Xt −Xt+1∥21/(8ηt)
]

≤ E[∥X1 − x⋆∥21/ηT+1
]−

T∑
t=1

∥Xt −Xt+1∥21/(8ηt)
+ (12NL2 + 8NL+ 2L+ 4)

N∑
i=1

E
[√

λiT

]
+ 432N3L6 + 24N2G2 + (12NL2 + 8NL+ 2L+ 8)(NG2 +Nσ̄2) (46)

Using Lemma 17, we can then further bound the RHS of (46) with

∥X1 − x⋆∥21/ηT+1
−

T∑
t=1

∥Xt −Xt+1∥21/(8ηt)
=

N∑
i=1

(
∥Xi

1 − xi⋆∥2

ηiT+1

−
T∑
t=1

∥Xi
t −Xi

t+1∥2

8ηit

)

≤
N∑
i=1

(
∥Xi

1 − xi⋆∥2
√

1 + λiT−1 + 2∥xi⋆∥4
)

≤ Nρ2 + 2Nρ4 +

N∑
i=1

ρ2
√
λiT−1. (47)

Finally, using ηt ≤ 1, X3/2 = X1, and γ2 = γ1, the left-hand side (LHS) of (46) can be bounded from below
by

T∑
t=2

E[∥V(Xt+ 1
2
)∥2γt

+ ∥V(Xt− 1
2
)∥2γt

] +

T∑
t=1

E[∥Xt −Xt+1∥21/(8ηt)
]

≥
T∑
t=1

E[∥V(Xt+ 1
2
)∥2γt

] +
1

8

T∑
t=1

E[∥Xt −Xt+1∥2]. (48)
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Combining (46), (47), and (48) gives the desired result.

We also refine Lemma 10 for the case of adaptive learning rates. The next lemma suggests the terms that
need to be bounded in expectation in order to control the regret.

Lemma 20 (Bound on linearized regret). Let Assumptions 1, 2 and 4 hold and all players run OptDA+
with adaptive learning rates (Adapt). Then, for all i ∈ N , T ∈ N, and bounded set Ki ⊂ X i with R ≥
suppi∈Ki∥Xi

1 − pi∥, it holds that

max
pi∈Ki

E

[
T∑
t=1

⟨V i(Xt+ 1
2
), Xi

t+ 1
2
− pi⟩

]
≤ E

[(
R2

2
+

L+ 1

2

)√
λiT + (6L2 + 4L)

N∑
j=1

√
λjT−1

+
R2
√
µiT−1

2
+

3L2

2

T−1∑
t=1

∥Xt −Xt+1∥2

+
R2

2
+ (6NL2 + 4NL+ L+ 2)(G2 + σ̄2)

]
.

Proof. We will derive inequality (49) from Lemma 10. To begin, by Assumption 3(a) the noises are conditionally
unbiased and we can thus write

Et−1[∥V̂ i
t− 1

2
∥2] = ∥V i(Xi

t− 1
2
)∥2 + Et−1[∥ξit− 1

2
∥2] ≥ Et−1[∥ξit− 1

2
∥2].

Subsequently, γt being Ft−1-measurable, applying the law of total expectation gives

E[∥ξt− 1
2
∥2γ2

t
] = E

[
N∑
i=1

(γit)
2 Et−1[∥ξit− 1

2
∥2]

]

≤ E

[
N∑
i=1

(γit)
2 Et−1[∥V̂ i

t− 1
2
∥2]

]
= E[∥V̂t− 1

2
∥2γ2

t
].

(49)

Plugging the above two inequalities into the inequality of Lemma 10 and using γit ≤ 1 results in

max
pi∈Ki

E

[
T∑
t=1

⟨V i(Xt+ 1
2
), Xi

t+ 1
2
− pi⟩

]

≤ E

[
R2

2ηiT+1

+

T∑
t=2

γitL
2

(
3∥V̂t− 1

2
∥2γ2

t
+

3

2
∥Xt −Xt−1∥2

)

+
1

2

T∑
t=2

((γit)
2L∥V̂ i

t− 1
2
∥2 + 4L∥V̂t− 1

2
∥2γ2

t
) +

1

2

T∑
t=1

ηit∥V̂ i
t+ 1

2
∥2
]

≤ E

[
R2
√
1 + λiT−1 + µiT−1

2
+

T−1∑
t=1

(3L2 + 2L)∥V̂t+ 1
2
∥2(γt+1)

2 +
3L2

2

T−1∑
t=1

∥Xt −Xt+1∥2

+
1

2

T−1∑
t=1

(γit+1)
2L∥V̂ i

t+ 1
2
∥2 + 1

2

T∑
t=1

ηit∥V̂ i
t+ 1

2
∥2
]
.

Since we have both (γit+1)
2 ≤ 1/

√
1 + λit−1 and ηit ≤ 1/

√
1 + λit−2, applying Lemma 15 leads to

T−1∑
t=1

(γit+1)
2L∥V̂ i

t+ 1
2
∥2 +

T∑
t=1

ηit∥V̂ i
t+ 1

2
∥2 ≤ L

(√
λiT−1 + 2(G2 + σ̄2)

)
+
√
λiT + 4(G2 + σ̄2).
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Similarly, using Lemma 16 we deduce

T−1∑
t=1

(3L2 + 2L)∥V̂t+ 1
2
∥2(γt+1)

2 ≤ (3L2 + 2L)

2N(G2 + σ̄2) +

N∑
j=1

2
√
λjT−1


Putting the above inequalities together and using

√
1 + λiT−1 + µiT−1 ≤ 1+

√
λiT−1+

√
µiT−1 gives the desired

result.

G.3.1 The Case of Additive Noise

From Lemma 19 and Lemma 20 we can readily derive our main results for the case of additive noise.

Theorem 12. Let Assumptions 1, 2 and 4 hold and all players run OptDA+ with adaptive learning rates
(Adapt). Then,

T∑
t=1

E[∥V(Xt+ 1
2
)]∥2 = O

(
T 1−q) .

Proof. With Lemma 13, for t ∈ {1, ..., T}, we can lower bound the learning rate γit by

γit =
1

(1 + λit−2)
1
2−q
≥ 1

(1 + 2max(t− 2, 0)(G2 + σ̄2))
1
2−q
≥ 1

(1 + 2T (G2 + σ̄2))
1
2−q

.

Lemma 19 thus guarantees ∑T
t=1 E[∥V(Xt+ 1

2
)∥2]

(1 + 2T (G2 + σ̄2))
1
2−q
≤ c1

N∑
i=1

E
[√

λit

]
+ c2.

We conclude by using again Lemma 13.

Theorem 13. Let Assumptions 1, 2 and 4 hold and all players run OptDA+ with adaptive learning rates
(Adapt). Then, for any i ∈ N and bounded set Ki ⊂ X i, we have

max
pi∈Ki

E

[
T∑
t=1

⟨V i(Xt+ 1
2
), Xi

t+ 1
2
− pi⟩

]
= O

(√
T
)
.

Proof. This follows from Lemma 20. To begin, with Lemma 13, we have clearly

E

[(
R2

2
+

L+ 1

2

)√
λit + (6L2 + 4L)

N∑
j=1

√
λjT−1

]
= O

(√
T
)
.

Next, thanks to Lemma 19 we can bound

E

R2
√

µiT−1

2
+

3L2

2

T−1∑
t=1

∥Xt −Xt+1∥2
 ≤ E

[(
R2

2
+

3L2

2

) T−1∑
t=1

∥Xt −Xt+1∥2
]

≤ (4R2 + 12L2)

(
c1

N∑
i=1

E
[√

λit

]
+ c2

)
.

This is again in O(
√
T ). Plugging the above into Lemma 20 concludes the proof.
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G.3.2 The Case of Multiplicative Noise

The case of multiplicative noise is more delicate. As explained in Section 5, the main step is to establish an
inequality in the form of (6). This is achieved in Lemma 22 by using Lemma 19. Before that, we derive a
lemma to show how inequality (6) implies boundedness of the relevant quantities.

Lemma 21. Let p, r, c ∈ R+ such that p > r, c ∈ R+, and (a1, . . . , aN ) be a collection of N non-negative
real-valued random variables. If

N∑
i=1

E[(ai)p] ≤ c

N∑
i=1

E[(ai)r], (50)

Then
∑N
i=1 E[(ai)p] ≤ Nc

p
p−r and

∑N
i=1 E[(ai)r] ≤ Nc

r
p−r .

Proof. Since p > r, the function y ∈ R+ ∪{0} 7→ y
r
p is concave. Applying Jensen’s inequality for the

expectation gives E[(ai)r] ≤ E[(ai)p]
r
p . Next, we apply Jensen’s inequality for the average to obtain

1

N

N∑
i=1

E[(ai)p]
r
p ≤

(
1

N

N∑
i=1

E[(ai)p]

) r
p

. (51)

Along with inequality (50) we then get

N∑
i=1

E[(ai)p] ≤ c

N∑
i=1

E[(ai)r] ≤ cN1− r
p

(
N∑
i=1

E[(ai)p]

) r
p

. (52)

In other words (
N∑
i=1

E[(ai)p]

)1− r
p

≤ cN1− r
p .

Taking both sides of the inequality to the power of p/(p− r), we obtain effectively

N∑
i=1

E[(ai)p] ≤ Nc
p

p−r

The second inequality combines the above with second part of (52).

In the next lemma we build inequality (6), and combined with Lemma 21 we obtain the boundedness of
various quantities. This is also where the factor 1/q shows up.

Lemma 22. Let Assumptions 1, 2 and 4 hold and all players run OptDA+ with adaptive learning rates
(Adapt). Assume additionally Assumption 3 with σA = 0. Then, for any T ∈ N, we have

N∑
i=1

E
[
(1 + λiT )

1
2+q
]
≤ N

(
(1 + σ2

M )c1 +
(1 + σ2

M )c2 + 1

N

)1+ 1
2q

, (53)

N∑
i=1

E
[√

1 + λiT

]
≤ N

(
(1 + σ2

M )c1 +
(1 + σ2

M )c2 + 1

N

) 1
2q

, (54)

N∑
i=1

E[µiT ] ≤ 8Nc1

(
(1 + σ2

M )c1 +
(1 + σ2

M )c2 + 1

N

) 1
2q

+ 8c2. (55)

Proof. From Lemma 19 we know that

T∑
t=1

E[∥V(Xt+ 1
2
)∥2γt

] ≤ c1

N∑
i=1

E
[√

λiT

]
+ c2,
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Since γt is Ft-measurable (it is even Ft−1-measurable), using the relative noise assumption and the law of
total expectation we get

E[∥V(Xt+ 1
2
)∥2γt

] =

N∑
i=1

E[γit Et[∥V i(Xt+ 1
2
)]∥2] ≥

N∑
i=1

E

γit Et
∥V̂ i

t+ 1
2

∥2

1 + σ2
M

 =
∥V̂t+ 1

2
∥2γt

1 + σ2
M

.

The learning rates γt being non-increasing, we can then bound from below the sum of E[∥V(Xt+ 1
2
)∥2γt

] by

T∑
t=1

E[∥V(Xt+ 1
2
)∥2γt

] ≥ 1

1 + σ2
M

T∑
t=1

E[∥V̂t+ 1
2
∥2γt

]

≥ 1

1 + σ2
M

T∑
t=1

E[∥V̂t+ 1
2
∥2γT+2

]

=
1

1 + σ2
M

N∑
i=1

E

∑T
t=1∥V̂ i

t+ 1
2

∥2

(1 + λiT )
1
2−q


=

1

1 + σ2
M

N∑
i=1

E

[
λiT + 1− 1

(1 + λiT )
1
2−q

]

≥ − 1

1 + σ2
M

+
1

1 + σ2
M

N∑
i=1

E
[
(1 + λiT )

1
2+q
]
.

As a consequence, we have shown that

N∑
i=1

E
[
(1 + λiT )

1
2+q
]
≤ (1 + σ2

M )c1

N∑
i=1

E
[√

λiT

]
+ (1 + σ2

M )c2 + 1,

Subsequently,

N∑
i=1

E
[
(1 + λiT )

1
2+q
]
≤
(
(1 + σ2

M )c1 +
(1 + σ2

M )c2 + 1

N

) N∑
i=1

E
[√

1 + λiT

]
.

We deduce (53) and (54) with the help of Lemma 21 taking p← 3/4− q, r ← 1/2, c← (1 + σ2
M )c1 + ((1 +

σ2
M )c2 + 1)/N , and ai ← 1 + λiT . Plugging (54) into Lemma 19 gives (55).

Now, as an immediate consequence of all our previous results, we obtain the constant regret bound of adaptive
OptDA+ under multiplicative noise.

Theorem 14. Let Assumptions 1, 2 and 4 hold and all players run OptDA+ with adaptive learning rates
(Adapt). Assume additionally Assumption 3 with σA = 0. Then, for any i ∈ N and bounded set Ki, we have

E

[
max
pi∈Ki

T∑
t=1

⟨V i(Xt+ 1
2
), Xi

t+ 1
2
− pi⟩

]
= O

(
exp

(
1

2q

))
.

Proof. Combining Lemma 20 and Lemma 22 gives the desired result.

H Last-iterate Convergence

We close our appendix with proofs on almost-sure last-iterate convergence of the trajectories. The global proof
schema was sketched in Section 6 for the particular case of Theorem 4 (which corresponds to the upcoming
Theorem 17). To prove last-iterate convergence we make heavy use of the different results that we derived in
previous sections.
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H.1 Lemmas on Stochastic Sequences

To begin, we state several basic lemmas concerning stochastic sequences. The first one translates a bound
of expectation into almost sure boundedness and convergence. It is a special case of Doob’s martingale
convergence theorem [23], but we also provide another elementary proof below. For simplicity, throughout
the sequel, we use the term finite random variable to refer to those random variables which are finite almost
surely.

Lemma 23. Let (Ut)t∈N be a sequence of non-decreasing and non-negative real-valued random variables. If
there exists constant C ∈ R such that

∀ t ∈ N, E[Ut] ≤ C.

Then (Ut)t∈N converges almost surely to a finite random variable. In particular, for any sequence of non-
negative real-valued random variables (χt)t∈N, the fact that

∑+∞
t=1 E[χt] < +∞ implies

∑+∞
t=1 χt < +∞ almost

surely, and accordingly limt→+∞ χt = 0 almost surely.

Proof. Let U∞ be the pointwise limit of (Ut)t∈N. Applying Beppo Levi’s lemma we deduce that U∞ is
also measurable and limt→+∞ E[Ut] = E[U∞]. Accordingly, E[U∞] ≤ C. The random variable U∞ being
non-negative, E[U∞] ≤ C < +∞ implies that U∞ is finite almost surely, which concludes the first statement
of the lemma. The second statement is derived from the first statement by setting Ut =

∑t
s=1 χs.

The next lemma is essential for building almost sure last-iterate converge in the case of vanishing learning
rates, as it allows to extract a convergent subsequence.

Lemma 24. Let (Ut)t∈N be a sequence of non-negative real-valued random variables such that

lim inf
t→+∞

E[Ut] = 0.

Then, i) there exists a subsequence (Uω(t))t∈N of (Ut)t∈N that converges to 0 almost surely;4 and accordingly
ii) it holds almost surely that lim inft→+∞ Ut = 0.

Proof. Since lim inft→+∞ E[Ut] = 0, we can extract a subsequence (Uω(t))t∈N such that for all t ∈ N,
E[Uω(t)] ≤ 2−t. This gives

∑+∞
t=1 E[Uω(t)] < +∞ and invoking Lemma 23 we then know that

∑+∞
t=1 Uω(t) < +∞

almost surely, which in turn implies that Uω(t) converges to 0 almost surely. To prove (ii), we just notice that
for any realization such that limt→+∞ Uω(t) = 0, we have 0 = limt→+∞ Uω(t) ≥ lim inft→+∞ Ut ≥ 0 and thus
the equalities must hold, i.e., lim inft→+∞ Ut = 0.

Another important building block is Robbins-Sigmunds’s theorem that allows us to show almost sure
convergence of the Lyapunov function to a finite random variable.

Lemma 25 (Robbins and Sigmund [52]). Consider a filtration (Gt)t∈N and four non-negative real-valued
(Gt)t∈N-adapted processes (Ut)t∈N, (αt)t∈N, (χt)t∈N, (ζt)t∈N such that E[U1] < +∞,

∑+∞
t=1 E[αt] < ∞,∑+∞

t=1 E[χt] <∞, and for all t ∈ N,

E[Ut+1 | Gt] ≤ (1 + αt)Ut + χt − ζt.

Then (Ut)t∈N converges almost surely to a finite random variable and
∑+∞
t=1 ζt <∞ almost surely.

Finally, since the solution may not be unique, we need a to translate the result with respect to a single point
to the one that applies to the entire set. This is achieved through the following lemma.

Lemma 26. Let K ⊆ Rd be a closed set, (ut)t∈N be a sequence of Rd-valued random variable, and (αt)t∈N be
a sequence of RN -valued random variable such that

(a) For all i ∈ N , αi1 ≥ 1, (αit)t∈N is non-decreasing and converges to a finite constant almost surely.
(b) For all x ∈ K, ∥ut − x∥αt

converges almost surely.

4We remark that the choice of the subsequence does not depend on the realization but only the distribution of the random
variables.
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Then, with probability 1, the vector α∞ = limt→+∞ αt is well-defined, finite, and ∥ut − x∥α∞ converges for
all x ∈ K.

Proof. As Rd is a separable metric space, K is also separable and we can find a countable set Z such that
K = cl(Z). Let us define the event

E := {α∞ = lim
t→+∞

αt is well-defined and finite; ∥ut − z∥αt converges for all z ∈ Z.} (56)

The set Z being countable, from (a) and (b) we then know that P(E) = 1. In the following, we show that
∥ut − x∥α∞ converges for all x ∈ K whenever E happens, which concludes our proof.
Let us now consider a realization of E . We first establish the convergence of ∥ut − z∥α∞ for any z ∈ Z.
To begin, the convergence of ∥ut − z∥αt

implies the boundedness of this sequence, from which we deduce
immediately the boundedness of ∥ut − z∥ as ∥ut − z∥ ≤ ∥ut − z∥αt by αt ≥ α1 ≥ 1. In other words,
C = supt∈N∥ut − z∥ is finite. Furthermore, we have

0 ≤ ∥ut − z∥2α∞
− ∥ut − z∥2αt

=

N∑
i=1

(αi∞ − αit)∥uit − zi∥2 ≤
N∑
i=1

(αi∞ − αit)C
2. (57)

Since αi∞ − αit converges to 0 when t goes to infinity, from (57) we get immediately limt→+∞(∥ut − z∥2α∞
−

∥ut − z∥2αt
) = 0. This shows that ∥ut − z∥2α∞

converges to limt→+∞∥ut − z∥2αt
, which exists by definition of

E . We have thus shown the convergence of ∥ut − z∥α∞ .
To conclude, we need to show that ∥ut − x∥α∞ in fact converges for all x ∈ K. Let x ∈ K. As Z is dense in
K, there exists a sequence of points (zk)k∈N with zk ∈ Z for all k ∈ N such that limk→+∞ zk = x. For any
t, k ∈ N, the triangular inequality implies

−∥zk − x∥α∞ ≤ ∥ut − x∥α∞ − ∥ut − zk∥α∞ ≤ ∥zk − x∥α∞ .

Since zk ∈ Z, we have shown that limt→+∞∥ut − zk∥ exists. Subsequently, we get

−∥zk − x∥α∞ ≤ lim inf
t→+∞

∥ut − x∥α∞ − lim
t→+∞

∥ut − zk∥α∞

≤ lim sup
t→+∞

∥ut − x∥α∞ − lim
t→+∞

∥ut − zk∥α∞

≤ ∥zk − x∥α∞ .

Taking the limit as k → +∞, we deduce that limk→+∞ limt→+∞∥ut − zk∥α∞ exists and

lim inf
t→+∞

∥ut − x∥α∞ = lim
k→+∞

lim
t→+∞

∥ut − zk∥α∞ = lim sup
t→+∞

∥ut − x∥α∞ .

This shows the convergence of ∥ut − x∥α∞ .

Corollary 3. Let K ⊆ Rd be a closed set, (ut)t∈N be a sequence of Rd-valued random variable, and α ∈ RN
such that αi ≥ 1 for all i ∈ N , and for all x ∈ K, ∥ut − x∥α converges almost surely. Then, with probability
1, ∥ut − x∥α converges for all x ∈ K.

H.2 Trajectory Convergence of OG+ under Additive Noise

We start by proving the almost sure last-iterate convergence of OG+ under additive noise. This proof is, in
a sense, the most technical once the results of the previous sections are established. This is because with
vanishing learning rates, we cannot show that every cluster point of (Xt+ 1

2
)t∈N is a Nash equilibrium with

probability 1. Instead we need to work with subsequences.
We will prove the convergence of Xt and Xt+ 1

2
separately, and under relaxed learning rate requirements. For

the convergence of Xt, a learning rate condition introduced in [27] for double step-size EG is considered.

Theorem 15. Let Assumptions 1–3 hold and all players run (OG+) with non-increasing learning rate
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sequences (γt)t∈N and (ηt)t∈N satisfying (4) and

+∞∑
t=1

γtηt+1 =∞,

+∞∑
t=1

γ2
t ηt+1 <∞,

+∞∑
t=1

η2t <∞. (58)

Then, Xt converges almost surely to a Nash equilibrium.

Proof. Our proof is divided into four steps. To begin, let us define X̃1 = X1 and for all t ≥ 2,

X̃t = Xt + ηtξt− 1
2
= Xt−1 − ηtV(Xt− 1

2
)

Notice that X̃t is Ft−1-measurable. This surrogate of Xt plays an important role in the subsequent analysis.

(1) With probability 1, ∥X̃t − x⋆∥ converges for all x⋆ ∈ X⋆. Let x⋆ ∈ X⋆. We would like to apply
Robbins-Siegmund’s theorem (Lemma 25) to the inequality of Lemma 5 with

Gt ← Ft−1, Ut ← Et−1[∥Xt − x⋆∥2], αt ← 0,

ζt ← γtηt+1(Et−1[∥V(Xt+ 1
2
)∥2] + ∥V(Xt− 1

2
)∥2),

χt ← Et−1[3γtηt+1NL2((η2t + γ2
t )∥V̂t− 1

2
∥2 + (γt−1)

2∥V̂t− 3
2
∥2)

+ (γ2
t ηt+1 +Nηt+1(ηt + γt)

2)L∥ξt− 1
2
∥2 + (ηt+1)

2∥V̂t+ 1
2
∥2].

As Lemma 5 only applies to t ≥ 2, for t = 1 we use inequality (15). We thus choose ζ1 = 0 and χ1 = η22∥V̂3/2∥2.

We claim that
∑+∞
t=1 E[χt] < +∞. In fact, following the proof of Proposition 5, we can deduce

+∞∑
t=1

E[χt] ≤
+∞∑
t=1

γtηt+1(at(1 + σ2
M ) + btσ

2
M )E[∥V(Xt+ 1

2
)∥2]︸ ︷︷ ︸

(A)

+

+∞∑
t=1

γtηt+1(at + bt)Nσ2
A︸ ︷︷ ︸

(B)

,

for at = ηt+1/γt + 9γ2
tNL2 and bt = γt(4N + 1)L. With our learning rate requirements it is true that

at(1+ σ2
M ) + btσ

2
M ≤ 3/2, so Proposition 5 implies (A) is finite. On the other hand, from

∑+∞
t=1 γ

2
t ηt+1 < +∞

and
∑+∞
t=1 η

2
t < +∞ we deduce that (B) is also finite. We then conclude that it is effectively true that∑+∞

t=1 E[χt] < +∞.

As a consequence, applying Robbins-Siegmund theorem gives the almost sure convergence of Et−1[∥Xt−x⋆∥2]
to a finite random variable U∞. To proceed, we use the equality

Et−1[∥Xt − x⋆∥2] = Et−1[∥X̃t − ηtξt− 1
2
− x⋆∥2] = ∥X̃t − x⋆∥2 + η2t Et−1[∥ξt− 1

2
∥2].

Accordingly,

+∞∑
t=2

E[Et−1[∥Xt − x⋆∥2]− ∥X̃t − x⋆∥2] =
+∞∑
t=2

E[η2t Et−1[∥ξt− 1
2
∥2]]

≤
+∞∑
t=2

η2t E[σ2
M∥V(Xt− 1

2
)∥2 +Nσ2

A]

≤
+∞∑
t=1

(γtηt+1σ
2
M E[∥V(Xt+ 1

2
)∥2] + (ηt+1)

2Nσ2
A)

< +∞. (59)

To obtain the last inequality we have applied i) Proposition 5; and ii) the summability of (η2t )t∈N. Invoking
Lemma 23, we deduce that Et−1[∥Xt − x⋆∥2]− ∥X̃t − x⋆∥2 converges to 0 almost surely. This together with
the almost sure convergence of Et−1[∥Xt − x⋆∥2] to U∞ we obtain the almost sure convergence of ∥X̃t − x⋆∥2

47



to U∞.
To summarize, we have shown that for all x⋆ ∈ X⋆, the distance ∥X̃t − x⋆∥ almost surely converges. Applying
Corollary 3, we conclude that the event {∥X̃t − x⋆∥ converges for all x⋆ ∈ X⋆} happens with probability 1.

(2) There exists and increasing function ω : N→ N such that ∥V(Xω(t)+ 1
2
)∥2 + ∥Xω(t)+ 1

2
− X̃ω(t)∥2 converges

to 0 almost surely. From Lemma 24, we know it is sufficient to show that

lim inf
t→+∞

E[∥V(Xt+ 1
2
)∥2 + ∥Xt+ 1

2
− X̃t∥2] = 0.

Since
∑+∞
t=1 γtηt+1 = +∞ in all the cases, the above is implied by

+∞∑
t=2

γtηt+1 E[∥V(Xt+ 1
2
)∥2 + ∥Xt+ 1

2
− X̃t∥2] < +∞. (60)

Using Assumption 3 and ηt < γt, we have

E[∥Xt+ 1
2
− X̃t∥2] = E[∥γtV(Xt− 1

2
) + (ηt + γt)ξt− 1

2
∥2]

= γ2
t E[∥V(Xt− 1

2
)∥2] + (ηt + γt)

2 E[∥ξt− 1
2
∥2]

≤ γ2
t (1 + 4σ2

M )E[∥V(Xt− 1
2
)∥2] + 4γ2

tNσ2
A.

Subsequently, with Proposition 5, the summability of (γ2
t ηt+1)t∈N and the fact that the learning rates are

non-increasing, we obtain

+∞∑
t=2

γtηt+1∥Xt+ 1
2
− X̃t∥2] ≤

+∞∑
t=2

γtηt+1 E[γ2
t (1 + 4σ2

M )∥V(Xt− 1
2
)∥2 + 4γ2

tNσ2
A]

≤
+∞∑
t=1

γ2
1γtηt+1(1 + 4σ2

M )∥V(Xt+ 1
2
)∥2 +

+∞∑
t=1

4γ1γ
2
t ηt+1Nσ2

A

< +∞.

Invoking Proposition 5 again gives
∑+∞
t=2 γtηt+1 E[∥V(Xt+ 1

2
)∥2] < +∞ and thus we have effectively (60). This

concludes the proof of this step.

(3) (X̃t)t∈N converges to a point in X⋆ almost surely. Let us define the event

E = {∥X̃t − x⋆∥ converges for all x⋆ ∈ X⋆; ∥V(Xω(t)+ 1
2
)∥2 + ∥Xω(t)+ 1

2
− X̃ω(t)∥2 converges to 0}

Combining the aforementioned two points we know that P(E) = 1. It is thus sufficient to show that (X̃t)t∈N
converges to a point in X⋆ for any realization E .
Let us consider a realization of E . The set X⋆ being non-empty, the convergence of ∥X̃t − x⋆∥ for a x⋆ ∈ X⋆
implies the boundedness of (X̃t)t∈N. Therefore, we can extract a subsequence of (X̃ω(t))t, which we denote
by (X̃ω(ψ(t)))t that converges to a point x∞ ∈ X . As limt→+∞∥Xω(ψ(t))+ 1

2
− X̃ω(ψ(t))∥2 = 0, we deduce

that (Xω(ψ(t)+ 1
2
))t also converges to x∞ ∈ X . Moreover, we also have limt→+∞∥V(Xω(ψ(t))+ 1

2
)∥2 = 0.

By continuity of V we then know that V(x∞) = 0, i.e., x∞ ∈ X⋆. By definition of E , this implies the
convergence of ∥X̃t − x∞∥. The limit limt→+∞∥X̃t − x∞∥ is thus well defined and limt→+∞∥X̃t − x∞∥ =
limt→+∞∥X̃ω(ψ(t)) − x∞∥. However, limt→+∞∥X̃ω(ψ(t)) − x∞∥ = 0 by the choice of x∞. We have therefore
limt→+∞∥X̃t − x∞∥ = 0. Recalling that x∞ ∈ X⋆, we have indeed shown that (X̃t)t∈N converges to a point
in X⋆.

(4) Conclude: (Xt)t∈N converges to a point in X⋆ almost surely . We claim that ∥Xt − X̃t∥ converges to 0.
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In fact, similar to (59), it holds that

+∞∑
t=1

E[∥Xt − X̃t∥2] =
+∞∑
t=2

η2t E[∥ξt− 1
2
∥2] < +∞.

Invoking Lemma 23 we get almost sure convergence of ∥Xt − X̃t∥ to 0. Moreover, we have shown in the
previous point that (X̃t)t∈N converges to a point in X⋆ almost surely. Combining the above two arguments we
obtain the almost sure convergence of (Xt)t∈N to a point in X⋆.

Provided that the players use larger extrapolation steps, the convergence of Xt does not necessarily imply the
convergence of Xt+ 1

2
. The next theorem derives sufficient condition for the latter to hold.

Theorem 16. Let Assumptions 1–3 hold and all players run (OG+) with non-increasing learning rate
sequences (γt)t∈N and (ηt)t∈N satisfying (4) and (58). Assume further that γ3

t = O(ηt) and there exists
r ∈ (2, 4] and σ > 0 such that E[∥ξt∥r] ≤ σr for all t and

∑+∞
t=1 γ

r <∞. Then, the actual point of play Xt+ 1
2

converges almost surely to a Nash equilibrium.

Proof. Since we already know that (Xt)t∈N converges to a point in X⋆ almost surely, it is sufficient to
show that limt→+∞∥Xt − Xt+ 1

2
∥ = 0 almost surely. By the update rule of OG+, we have, for t ≥ 2,

Xt −Xt+ 1
2
= γtV(Xt− 1

2
) + γtξt− 1

2
. We will deal with the two terms separately. For the noise term, we notice

that under the additional assumptions we have

+∞∑
t=2

E[∥γtξt− 1
2
∥r] ≤

+∞∑
t=2

γrt σ
r < +∞.

Therefore, applying Lemma 23 gives the almost sure convergence of ∥γtξt− 1
2
∥ to 0. As for the operator term,

for t ≥ 3 we bound
∥γtV(Xt− 1

2
)∥ ≤ γt∥V(Xt− 1

2
)−V(Xt−1)∥+ γt∥V(Xt−1)∥.

On one hand, as (Xt)t∈N converges to a point in X⋆ almost surely, the term γt∥V(Xt−1)∥ converges to 0
almost surely by continuity of V. On the other hand, by Lipschitz continuity of V we have

+∞∑
t=2

E[(γt+1)
2∥V(Xt+ 1

2
)−V(Xt)∥2] ≤

+∞∑
t=2

(γt+1)
2γ2
tNL2 E[∥V̂t− 1

2
∥2]

≤
+∞∑
t=2

γ4
tNL2 E[∥V(Xt− 1

2
)∥2] +

+∞∑
t=2

γ4
tNL2 E[∥ξt− 1

2
∥2]. (61)

Since γ3
t = O(ηt), there exists C ∈ R+ such that γ3

t ≤ Cηt for all t ∈ N. Along with Proposition 5 we get

+∞∑
t=2

γ4
tNL2 E[∥V(Xt− 1

2
)∥2] ≤

+∞∑
t=2

γt−1ηtCNL2 E[∥V(Xt− 1
2
)∥2] < +∞. (62)

Since r > 2, by Jensen’s inequality E[∥ξt∥r] ≤ σr implies E[∥ξt∥2] ≤ σ2. Along with r ≤ 4 and
∑+∞
t=1 γ

r
t < +∞

we deduce
+∞∑
t=2

γ4
tNL2 E[∥ξt− 1

2
∥2] ≤

+∞∑
t=2

γrt γ
4−r
1 NL2σ2 < +∞. (63)

Combining (61), (62), and (63) we obtain
∑+∞
t=2 E[(γt+1)

2∥V(Xt+ 1
2
) − V(Xt)∥2] < +∞, which implies

limt→+∞ γt+1∥V(Xt+ 1
2
)−V(Xt)∥ = 0 using Lemma 23. In summary, we have shown the three sequences

(γt∥ξt− 1
2
∥)t∈N, (γt∥V(Xt−1)∥)t∈N, and (γt∥V(Xt− 1

2
) −V(Xt−1)∥)t∈N converge almost surely to 0. As we

have

∥Xt −Xt+ 1
2
∥ = ∥γtV(Xt− 1

2
) + γtξt− 1

2
∥ ≤ γt∥V(Xt− 1

2
)−V(Xt−1)∥+ γt∥V(Xt−1)∥+ γt∥ξt− 1

2
∥,

we can indeed conclude that limt→+∞∥Xt −Xt+ 1
2
∥ = 0 almost surely.
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H.3 Trajectory Convergence of Non-Adaptive OptDA+ under Multiplicative
Noise

We now turn to the case of multiplicative noise and prove almost sure last-iterate convergence with constant
learning rates.

Theorem 17. Let Assumptions 1–3 hold with σA = 0 and all players run (OG+) / (OptDA+) with learning
rates given in Theorem 2(b). Then, both Xt and Xt+ 1

2
converge almost surely to a Nash equilibrium.

Proof. As in the proof Theorem 15, we define X̃1 = X1 and for all i ∈ N , t ≥ 2,

X̃i
t = Xi

t + ηiξit− 1
2
= −ηi

t−2∑
s=1

V̂ i
t+ 1

2
− ηiV i(Xt− 1

2
).

X̃t serves a surrogate for Xt and is Ft−1-measurable. Our first step is to show that

With probability 1, ∥X̃t − x⋆∥1/η converges for all x⋆ ∈ X⋆.

For this, we fix x⋆ ∈ X⋆ and apply Robbins-Siegmund’s theorem (Lemma 25) to inequality (13) of Lemma 7
with

Gt ← Ft−1, Ut ← Et−1[∥Xt − x⋆∥21/η], αt ← 0, ζt ← Et−1[∥V(Xt+ 1
2
)∥2γ ] + ∥V(Xt− 1

2
)∥2γ ,

χt ← Et−1[3∥V(Xt)−V(Xt−1)∥2γ + (4N + 1)L∥ξt− 1
2
∥2γ2

+ 3L2(∥γ∥1∥V̂t− 1
2
∥2γ2 + ∥γ∥1∥V̂t− 3

2
∥2γ2) + 2∥V̂t+ 1

2
∥2η].

For t = 1 we use (31); thus ζt = 0 and χt = ∥V̂3/2∥2η. To see that Robbins-Siegmund’s theorem is effectively
applicable, we use Assumptions 1 and 3 with σA = 0 to establish5

E[χt] ≤ E[3∥γ∥∞L2∥Xt −Xt−1∥2

+ (∥γ∥∞(4N + 1)Lσ2
M + 3∥γ∥2∞NL2(1 + σ2

M ))∥V(Xt− 1
2
)∥2γ ]

+ 3∥γ∥2∞NL2(1 + σ2
M )∥V(Xt− 3

2
)∥2γ + 2(1 + σ2

M )∥V(Xt+ 1
2
)∥2η].

With 2(1+σ2
M )η ≤ γ, it follows immediately from Proposition 6 that

∑+∞
t=1 E[χt] < +∞. Robbins-Siegmund’s

theorem thus ensures the almost sure convergence of Et−1[∥Xt − x⋆∥2] to a finite random variable. By
definition of X̃i

t , we have

Et−1[∥Xi
t − xi⋆∥2] = Et−1[∥X̃i

t − ηiξit− 1
2
− xi⋆∥2] = ∥X̃i

t − xi⋆∥2 + (ηi)2 Et−1[∥ξit− 1
2
∥2].

Subsequently
Et−1[∥Xt − x⋆∥21/η] = ∥X̃t − x⋆∥21/η + Et−1[∥ξt− 1

2
∥2η].

Therefore, by Assumption 3 with σA = 0 and Proposition 6 we get

+∞∑
t=2

E[Et−1[∥Xt − x⋆∥21/η]− ∥X̃t − x⋆∥21/η] =
+∞∑
t=2

E[∥ξt− 1
2
∥2η] ≤

+∞∑
t=2

σ2
M E[∥V(Xt− 1

2
)∥2η] < +∞.

Following the proof of Theorem 15, we deduce with the help of Lemma 23 and Corollary 3 that the claimed
argument is effectively true, i.e., with probability 1, ∥X̃t − x⋆∥1/η converges for all x⋆ ∈ X⋆.

Since ∥Xt− X̃t∥2 = ∥ξt− 1
2
∥2η2 and ∥Xt+ 1

2
− X̃t∥2 =

∑N
i=1∥γiV̂ i

t− 1
2

+ηiξi
t− 1

2

∥2 (for t ≥ 2), applying the relative

noise assumption, Proposition 6 (or simply point (a)), and Lemma 23 we deduce that both ∥Xt − X̃t∥ and

5For t = 1 and t = 2, we remove the terms that involve either X1/2, X0, or X−1/2.
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∥Xt+ 1
2
− X̃t∥ converge to 0 almost surely. Moreover, point (a) along with Lemma 23 also implies the almost

sure convergence of ∥V(Xt+ 1
2
)∥ to 0. In summary, we have shown that the event

E :=

 ∥X̃t − x⋆∥1/η converges for all x⋆ ∈ X⋆,
lim

t→+∞
∥Xt − X̃t∥ = 0, lim

t→+∞
∥Xt+ 1

2
− X̃t∥ = 0, lim

t→+∞
∥V(Xt+ 1

2
)∥ = 0


happens almost surely. To conclude, we just need to show that Xt and Xt+ 1

2
converge to a point in X⋆ whenever

E happens. The convergence of ∥X̃t − x⋆∥1/η for a point x⋆ in particular implies the boundedness of (X̃t)t∈N.
Therefore, (X̃t)t∈N has at least a cluster point, which we denote by x∞. Provided that limt→+∞∥Xt+ 1

2
−X̃t∥ =

0, the point x∞ is clearly also a cluster point of (Xt+ 1
2
)t∈N. By limt→+∞∥V(Xt+ 1

2
)∥ = 0 and the continuity

of V we then have V(x∞) = 0, i.e., x∞ ∈ X⋆. This in turn implies that ∥X̃t − x∞∥1/η converges, so this
limit can only be 0. In other words, (X̃t)t∈N converges to x∞; we conclude by limt→+∞∥Xt − X̃t∥ = 0 and
limt→+∞∥Xt+ 1

2
− X̃t∥ = 0.

H.4 Trajectory Convergence of Adaptive OptDA+ under Multiplicative Noise

In closing, we prove the almost sure last-iterate convergence of adaptive OptDA+ under multiplicative noise.
As claimed in Section 6, we first show that the learning rates almost surely converge to positive constant.
This intuitively means that the analysis of the last section should apply as well.

Lemma 27. Let Assumptions 1–4 hold with σA = 0 and all players run OptDA+ with adaptive learning rates
(Adapt). Then,

(a) With probability 1, for all i ∈ N , (λit)t∈N and (µit)t∈N converge to finite constant.
(b) With probability 1, for all i ∈ N , the learning rates (γit)t∈N and (ηit)t∈N converge to positive constants.

Proof. We notice that (b) is a direct consequence of (a) so we will only show (a) below. For this, we
make use of Lemma 22 and Lemma 23. In fact, (

√
λit)t∈N is clearly non-decreasing and by Lemma 22,

supt∈N E[
√
λit] < +∞. Therefore, Lemma 23 ensures the almost sure convergence of (

√
λit)t∈N to a finite

random variable, which in turn implies that (λit)t∈N converges to a finite constant almost surely. Similarly,
(µit)t∈N is non-decreasing and supt∈N E[µit] < +∞ by Lemma 22. We thus deduce by Lemma 23 that (µit)t∈N
converges to finite constant almost surely.

We now adapt the proof of Theorem 17 to the case of adaptive learning rates. Note that the fact that the
learning rates are not constant also causes some additional challenges.

Theorem 18. Let Assumptions 1–4 hold with σA = 0 and all players run (OptDA+) with adaptive learning
rates (Adapt). Then,

(a) It holds almost surely that
∑+∞
t=1∥V(Xt+ 1

2
)∥2 < +∞.

(b) Both (Xt)t∈N and (Xt+ 1
2
)t∈N converge to a Nash equilibrium almost surely.

Proof. In the following, we define γ∞ = limt→+∞ γt and η∞ = limt→+∞ ηt as the limits of the learning rate
sequences. Since for each i ∈ N , (γit)t∈N and (ηit)t∈N are non-negative non-increasing sequences, both γ∞ and
η∞ are well-defined. Moreover, by Lemma 27 we know that γ∞ and η∞ are positive almost surely.

(a) Combining Lemma 19 and Lemma 22 we get immediately
∑+∞
t=1 E[∥V(Xt+ 1

2
)∥2γt

] < +∞. Therefore, using
Lemma 23 we deduce that

∑+∞
t=1∥V(Xt+ 1

2
)∥2γt

< +∞ almost surely. By definition of γ∞ we have

+∞∑
t=1

∥V(Xt+ 1
2
)∥2γt

≥
+∞∑
t=1

∥V(Xt+ 1
2
)∥2γ∞

≥ min
i∈N

γi∞

+∞∑
t=1

∥V(Xt+ 1
2
)∥2
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As a consequence, whenever i) C :=
∑+∞
t=1∥V(Xt+ 1

2
)∥2γt

is finite; and ii) mini∈N γi∞ > 0, we have

+∞∑
t=1

∥V(Xt+ 1
2
)∥2 ≤ C

mini∈N γi∞
< +∞.

As both i) and ii) hold almost surely, we have indeed shown that
∑+∞
t=1∥V(Xt+ 1

2
)∥2 < +∞ almost surely.

(b) To prove this point, we follow closely the proof of Theorem 17. To begin, we fix x⋆ ∈ X⋆ and show that
we can always apply Robbins-Siegmund’s theorem (Lemma 25) to inequality (13) of Lemma 7 (or inequality
(31) for t = 1). This gives, for t ≥ 2,

Gt = Ft−1, Ut = Et−1[∥Xt − x⋆∥21/ηt
], αt = 0, ζt = Et−1[∥V(Xt+ 1

2
)∥2γt

] + ∥V(Xt− 1
2
)∥2γt

,

χt = Et−1[3∥V(Xt)−V(Xt−1)∥2γt
+ ∥X1 − x⋆∥21/ηt+1−1/ηt

+ (4N + 1)L∥ξt− 1
2
∥2γ2

t
+ 3L2

(∥γt∥1∥V̂t− 1
2
∥2γ2

t
+ ∥γt−1∥1∥V̂t− 3

2
∥2(γt−1)

2) + 2∥V̂t+ 1
2
∥2ηt

].

As for t = 1, we replace the above with ζt = 0 and χt = ∥V̂3/2∥2η1
. Using Assumption 1, (44), and (45), we

can bound the sum of the expectation of χt by

T∑
t=1

E[χt] ≤
T−1∑
t=1

3L2 E[∥Xt −Xt+1∥2] +
N∑
i=1

(
∥Xi

1 − xi⋆∥2 E
[√

1 + λiT−1 + µiT−1

])
+ (6NL2 + (4N + 1)L)

(
2N(G2 + σ̄2) +

N∑
i=1

2E
[√

λiT−1

])
+

+ 8N(G2 + σ̄2) +

N∑
i=1

4E
[√

λiT

]
It then follows immediately from Lemma 22 that

∑+∞
t=1 E[χt] < +∞. With Robbins-Siegmund’s theorem we

deduce that Et−1[∥Xt − x⋆∥21/ηt
] converges almost surely to a finite random variable.

As in the proof of Theorems 15 and 17, we next define X̃1 = X1 and for all i ∈ N , t ≥ 2,

X̃i
t = Xi

t + ηitξ
i
t− 1

2
= −ηit

t−2∑
s=1

V̂ i
t+ 1

2
− ηitV

i(Xt− 1
2
).

Then,
Et−1[∥Xt − x⋆∥21/ηt

] = ∥X̃t − x⋆∥21/ηt
+ Et−1[∥ξt− 1

2
∥2ηt

].

Using Et−1[∥ξit− 1
2

∥2] ≤ Et−1[∥V̂ i
t− 1

2

∥2], the law of total expectation, the fact that ηt is Ft−1-measurable,
Lemma 16, and Lemma 22, we then get

+∞∑
t=2

E[Et−1[∥Xt − x⋆∥21/ηt
]− ∥X̃t − x⋆∥21/ηt

] =

+∞∑
t=2

E[∥ξt− 1
2
∥2ηt

]

≤
+∞∑
t=2

E[∥V̂t− 1
2
∥2ηt

]

≤ 2N(G2 + σ̄2) + sup
t∈N

N∑
i=1

2E
[√

λit

]
< +∞. (64)

Invoking Lemma 23 we deduce that Et−1[∥Xt − x⋆∥21/ηt
]− ∥X̃t − x⋆∥21/ηt

almost surely converges to 0. Since
we have shown Et−1[∥Xt − x⋆∥21/ηt

] almost surely converges to a finite random variable, we now know that
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∥X̃t − x⋆∥21/ηt
almost surely converges to this finite random variable as well. To summarize, we have shown

that for any x⋆ ∈ X⋆, ∥X̃t − x⋆∥1/ηt
converges almost surely. Moreover, we also know that (1/η∞), the limit

of (1/ηt)t∈N is finite almost surely. Therefore, applying Lemma 26 with K ← X⋆, ut ← X̃t, and αt ← 1/ηt,
we deduce that with probability 1, the vector 1/η∞ is finite and ∥X̃t − x⋆∥1/η∞

converges for all x⋆ ∈ X⋆.

Next, with ∥Xt − X̃t∥2 = ∥ξt− 1
2
∥2
η2

t
and ∥Xt+ 1

2
− X̃t∥2 =

∑N
i=1∥γitV̂ i

t− 1
2

+ ηitξ
i
t− 1

2

∥2 (for t ≥ 2), following the

reasoning of (64), we get both
∑+∞
t=1 E[∥Xt− X̃t∥2] < +∞ and

∑+∞
t=1 E[∥Xt+ 1

2
− X̃t∥2] < +∞. By Lemma 23

we then know that ∥Xt − X̃t∥ and ∥Xt+ 1
2
− X̃t∥ converge to 0 almost surely. Finally, from point (a) we know

that ∥V(Xt+ 1
2
)∥ converges to 0 almost surely. To conclude, let us define the event

E :=

 1/η∞ is finite and ∥X̃t − x⋆∥1/η∞
converges for all x⋆ ∈ X⋆,

lim
t→+∞

∥Xt − X̃t∥ = 0, lim
t→+∞

∥Xt+ 1
2
− X̃t∥ = 0, lim

t→+∞
∥V(Xt+ 1

2
)∥ = 0


We have shown that P(E) = 1. Moreover, with the arguments of Theorem 17 we deduce that whenever E
happens both (Xt)t∈N and (Xt+ 1

2
)t∈N converge to a point in X⋆, and this ends the proof.
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