No-Regret Learning in Games with Noisy Feedback: Faster Rates and Adaptivity via Learning Rate Separation

Yu-Guan Hsieh, Kimon Antonakopoulos, Volkan Cevher, Panayotis Mertikopoulos Université Grenoble Alpes, EPFL

NeurIPS, December 2022

- Plays an action $x_t^i \in \mathcal{X}^i$
- Suffers loss $\ell^i(\mathbf{x}_t)$ and receives (first order) feedback $g_t^i \approx \nabla_i \ell^i(\mathbf{x}_t)$

- Each player i has a convex closed action set \mathcal{X}^i and a loss function $\ell^i: \mathcal{X}^1 \times \dots \times \mathcal{X}^N \to \mathbb{R}$
- Joint action of all players $\mathbf{x} = (x^i)_{i \in \mathcal{N}} = (x^i, \mathbf{x}^{-i})$
- $\ell^i(\cdot, \mathbf{x}^{-i})$ is convex and $\nabla_i \ell^i(\mathbf{x}_t)$ is Lipschitz continuous

- Plays an action $x_t^i \in \mathcal{X}^i$
- Suffers loss $\ell^i(\mathbf{x}_t)$ and receives (first order) feedback $q_t^i \approx \nabla_i \ell^i(\mathbf{x}_t)$

- Each player i has a convex closed action set \mathcal{X}^i and a loss function $\ell^i: \mathcal{X}^1 \times \dots \times \mathcal{X}^N \to \mathbb{R}$
- Joint action of all players $\mathbf{x} = (x^i)_{i \in \mathcal{N}} = (x^i, \mathbf{x}^{-i})$
- $\ell^i(\cdot, \mathbf{x}^{-i})$ is convex and $\nabla_i \ell^i(\mathbf{x}_t)$ is Lipschitz continuous

- Plays an action $x_t^i \in \mathcal{X}^i$
- Suffers loss $\ell^i(\mathbf{x}_t)$ and receives (first order) feedback $q_t^i \approx \nabla_i \ell^i(\mathbf{x}_t)$

- Each player i has a convex closed action set \mathcal{X}^i and a loss function $\ell^i: \mathcal{X}^1 \times \dots \times \mathcal{X}^N \to \mathbb{R}$
- Joint action of all players $\mathbf{x} = (x^i)_{i \in \mathcal{N}} = (x^i, \mathbf{x}^{-i})$
- $\ell^i(\cdot, \mathbf{x}^{-i})$ is convex and $\nabla_i \ell^i(\mathbf{x}_t)$ is Lipschitz continuous

- Plays an action $x_t^i \in \mathcal{X}^i$
- Suffers loss $\ell^i(\mathbf{x}_t)$ and receives (first order) feedback $q_t^i \approx \nabla_i \ell^i(\mathbf{x}_t)$

- Each player i has a convex closed action set \mathcal{X}^i and a loss function $\ell^i: \mathcal{X}^1 \times \dots \times \mathcal{X}^N \to \mathbb{R}$
- Joint action of all players $\mathbf{x} = (x^i)_{i \in \mathcal{N}} = (x^i, \mathbf{x}^{-i})$
- $\ell^i(\cdot, \mathbf{x}^{-i})$ is convex and $\nabla_i \ell^i(\mathbf{x}_t)$ is Lipschitz continuous
- Players can be adversarial or optimizing their own benefit

Regret and Oracle

• Individual regret of player *i*:

$$\operatorname{Reg}_{T}^{i}(\mathcal{P}^{i}) = \max_{p^{i} \in \mathcal{P}^{i}} \sum_{t=1}^{T} \left(\underbrace{\ell^{i}(x_{t}^{i}, \mathbf{x}_{t}^{-i}) - \ell^{i}(p^{i}, \mathbf{x}_{t}^{-i})}_{\operatorname{cost of not playing } p^{i} \text{ in round } t \right).$$

$$\mathcal{P}^{i}) = o(T)$$

No regret if $\operatorname{Reg}_T^i(\mathcal{P}^i) = o(T)$

Nearly constant regret is possible under perfect feedback if all players play some prescribed algorithm

Regret and Oracle

• Individual regret of player *i*:

$$\operatorname{Reg}_{T}^{i}(\mathcal{P}^{i}) = \max_{p^{i} \in \mathcal{P}^{i}} \sum_{t=1}^{T} \left(\underbrace{\ell^{i}(x_{t}^{i}, \mathbf{x}_{t}^{-i}) - \ell^{i}(p^{i}, \mathbf{x}_{t}^{-i})}_{\operatorname{cost of not playing } p^{i} \text{ in round } t \right).$$

No regret if $\operatorname{Reg}_T^i(\mathcal{P}^i) = o(T)$

Nearly constant regret is possible under perfect feedback if all players play some prescribed algorithm

- Stochastic oracle $\mathbb{E}[g_t^i] = \nabla_i \ell^i(\mathbf{x}_t)$
 - Additive noise: $g_t^i = \nabla_i \ell^i(\mathbf{x}_t) + \xi_t^i$
 - Multiplicative noise: $g_t^i = \nabla_i \ell^i(\mathbf{x}_t)(1 + \xi_t^i)$

where ξ_t^i is zero-mean and has finite variance

Question: Existing algorithms achieve constant regret in a broad family of games under perfect feedback. Can we achieve the same with noisy feedback?

Question: Existing algorithms achieve constant regret in a broad family of games under perfect feedback. Can we achieve the same with noisy feedback?

Answer: Yes if the noise is multiplicative. Just run optimistic algorithms with scale separation! E.g., OG+ $[\mathbf{x}_t = \mathbf{X}_{t+\frac{1}{2}}, \eta_t \leq \gamma_t]$

$$\mathbf{X}_{t+\frac{1}{2}} = \mathbf{X}_t - \underbrace{\gamma_t} \hat{\mathbf{V}}_{t-\frac{1}{2}}, \qquad \mathbf{X}_{t+1} = \mathbf{X}_t - \underbrace{\eta_t} \hat{\mathbf{V}}_{t+\frac{1}{2}}$$

Additional assumption: variational stability of the game (include monotone games and especially zero-sum polymatrix games)

Question: Existing algorithms achieve constant regret in a broad family of games under perfect feedback. Can we achieve the same with noisy feedback?

• Bonus 1: Adaptivity to bypass the need for knowing constants and to cope with adversarial opponents

Question: Existing algorithms achieve constant regret in a broad family of games under perfect feedback. Can we achieve the same with noisy feedback?

- Bonus 1: Adaptivity to bypass the need for knowing constants and to cope with adversarial opponents
- Bonus 2: Last-iterate convergence to Nash Equilibrium

Illustrating Example: Failure of Existing Algorithm

• Draw $\mathcal{L}_1(\mathbf{x}) = 3\theta\phi$ or $\mathcal{L}_2(\mathbf{x}) = -\theta\phi$ with equal probability so

$$\ell^1 = -\ell^2 = (\mathcal{L}_1 + \mathcal{L}_2)/2 = \theta\phi$$

• Stochastic estimate $\mathbb{E}[\hat{\mathbf{V}}_{t+\frac{1}{2}}] = \mathbf{V}(\mathbf{X}_{t+\frac{1}{2}})$

$$\hat{\mathbf{V}}_{t+\frac{1}{2}} = \begin{cases} (3\phi_{t+\frac{1}{2}}, -3\theta_{t+\frac{1}{2}}) & \text{ with prob. } 1/2 \\ (-\phi_{t+\frac{1}{2}}, \theta_{t+\frac{1}{2}}) & \text{ with prob. } 1/2 \end{cases}$$

• Optimistic gradient $[\mathbf{x}_t = \mathbf{X}_{t+\frac{1}{2}}]$

$$\mathbf{X}_{t+\frac{1}{2}} = \mathbf{X}_t - \eta_t \hat{\mathbf{V}}_{t-\frac{1}{2}}, \quad \mathbf{X}_{t+1} = \mathbf{X}_t - \eta_{t+1} \hat{\mathbf{V}}_{t+\frac{1}{2}}$$

Illustrating Example: Scale Separation

• Draw $\mathcal{L}_1(\mathbf{x}) = 3\theta\phi$ or $\mathcal{L}_2(\mathbf{x}) = -\theta\phi$ with equal probability so

$$\ell^{1} = -\ell^{2} = (\mathcal{L}_{1} + \mathcal{L}_{2})/2$$
• OG+ $[\mathbf{x}_{t} = \mathbf{X}_{t+\frac{1}{2}}]$

$$\mathbf{X}_{t+\frac{1}{2}} = \mathbf{X}_{t} - \underline{\gamma_{t}} \hat{\mathbf{V}}_{t-\frac{1}{2}}$$

$$\mathbf{X}_{t+1} = \mathbf{X}_{t} - \eta_{t} \hat{\mathbf{V}}_{t+\frac{1}{2}}$$
With $\gamma_{t} \ge \eta_{t}$

• This makes the noise an order smaller than the negative shift in the analysis

Illustrating Example: Adaptivity

• OptDA+ $[\gamma_t^i \ge \eta_t^i]$

$$X_{t+\frac{1}{2}}^{i} = X_{t}^{i} - \frac{\gamma_{t}^{i}}{\gamma_{t}^{i}} g_{t-1}^{i} \quad X_{t+1}^{i} = X_{1}^{i} - \eta_{t+1}^{i} \sum_{s=1}^{t} g_{s}^{i}$$

AdaOptDA+ uses learning rate

$$\gamma_t^i = \frac{1}{\left(1 + \sum_{s=1}^{t-2} \|g_s^i\|^2\right)^{\frac{1}{4}}}$$
$$\eta_t^i = \frac{1}{\sqrt{1 + \sum_{s=1}^{t-2} \left(\|g_s^i\|^2 + \|X_s^i - X_{s+1}^i\|^2\right)}}$$

.

Summary of Results

	Adversarial	All players run the same algorithm			
	Bounded feedback	Additive noise		Multiplicative noise	
	Regret	Regret	Convergence	Regret	Convergence
OG	×	×	×	×	×
OG+	×	$\sqrt{t}\log t$	 Image: A second s	cst	 Image: A second s
OptDA+	\sqrt{t}	\sqrt{t}	-	cst	√
AdaOptDA+	$t^{3/4}$	\sqrt{t}	_	cst	 Image: A second s