Multi-Agent Online Optimization with Delays

Yu-Guan Hsieh, Franck lutzeler, Jérôme Malick, Panayotis Mertikopoulos (UGA)

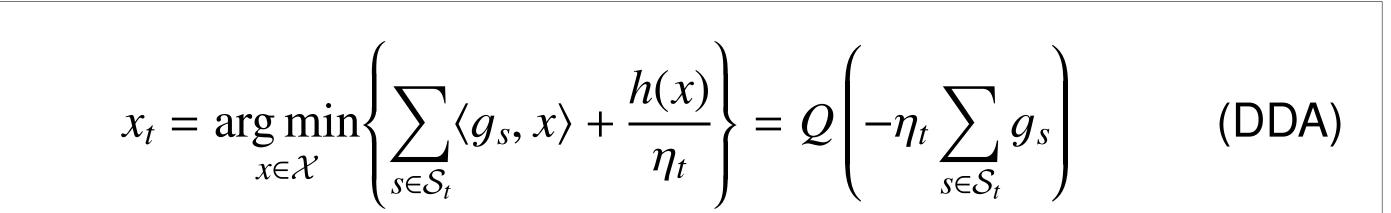
• Regret minimization in multi-agent environments with delayed feedback • Quantification of the impact of delay for an algorithm Summary. that aggregates the received feedback through dual averaging • Design of adaptive methods run exclusively based one local information

Motivation

- Increasing need for learning in a distributed fashion and in real time
 - Geographically distributed large-scale learning systems
 - Multi-agent systems deployed in a dynamic environment
- The feedback in the system is often delayed
 - inherent delays, computation delays, communication delays

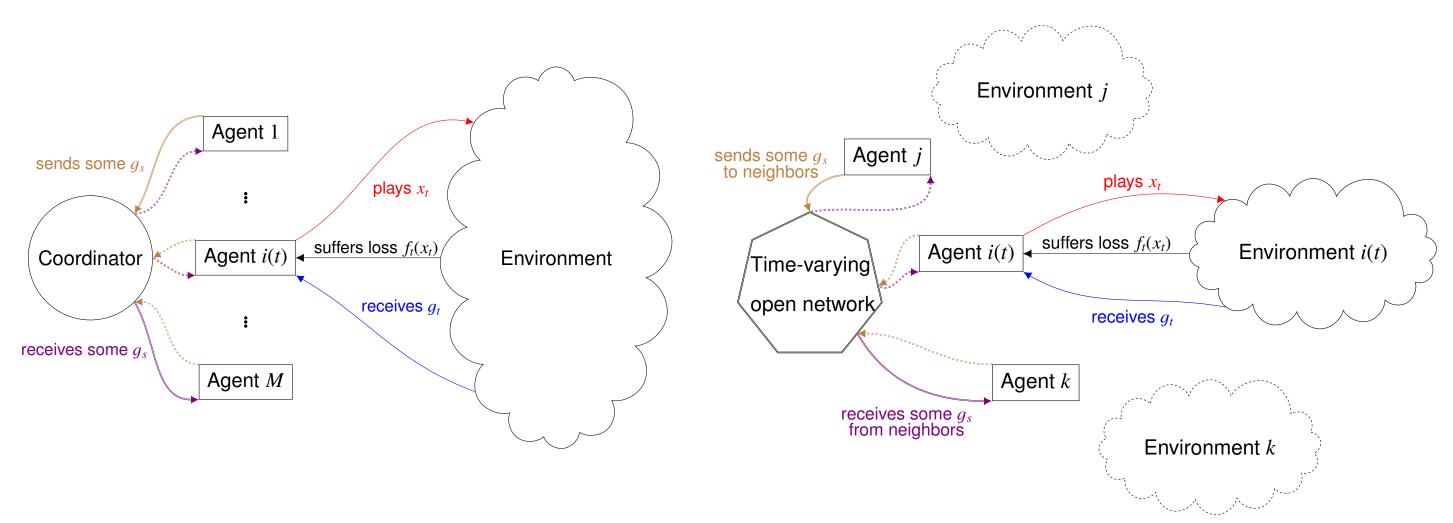
Delayed Dual Averaging

Let $h: \mathcal{X} \to \mathbb{R}$ be a regularizer and $Q(y) = \arg \max_{x \in \mathcal{X}} \{\langle y, x \rangle - h(x)\}$ be the mirror map induced by h. The feedback is aggregated with $\eta_t > 0$.



Problem Setup

Online learning in multi-agent systems



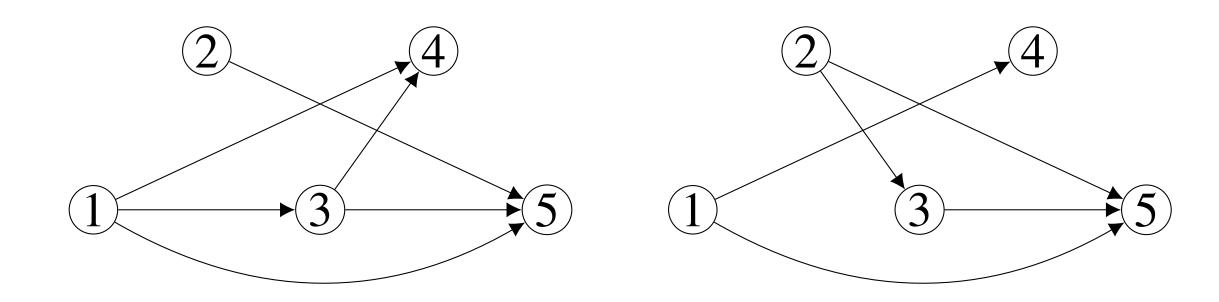
- Agents $\mathcal{M} = \{1, ..., M\}$; shared constrained set \mathcal{X}
- At each time slot t = 1, 2, ..., an agent $i(t) \in \mathcal{M}$ becomes active
- The agent is requested to make a prediction $x_t \in \mathcal{X}$
- The agent incurs a loss $f_t(x_t)$ for some convex f_t

• Regret:

$$\operatorname{Reg}_{\pi}(u) = \sum_{i=1}^{T} f_{i}(x_{i}) - \sum_{i=1}^{T} f_{i}(u)$$

Dependency graph and faithful permutation

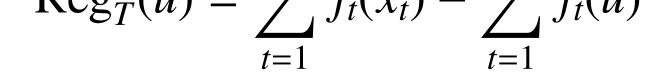
- We view each timestamp as a node and include a directed edge from s to t if and only if $s \in S_t$
- A permutation σ of $\{1, 2, \dots, T\}$ is faithful if and only if $\sigma(1), \dots, \sigma(T)$ is a topological ordering of \mathcal{G} , i.e., $s \in \mathcal{S}_t$ implies $\sigma^{-1}(s) < \sigma^{-1}(t)$



Impact of Delays

If σ is faithful and $\eta_{\sigma(t+1)} \leq \eta_{\sigma(t)}$, the algorithm enjoys the regret bound

$$\operatorname{Reg}_{T}(u) \leq \frac{h(u)}{\eta_{\sigma(T)}} + \frac{1}{2} \sum_{t=1}^{T} \eta_{\sigma(t)} \left(\|g_{\sigma(t)}\|_{*}^{2} + 2\|g_{\sigma(t)}\|_{*} \sum_{s \in \mathcal{U}^{\sigma}} \|g_{s}\|_{*} \right)$$



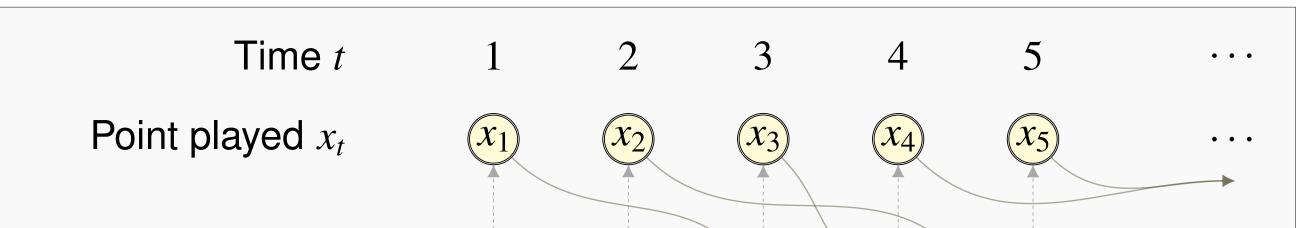
Delayed feedback. Feedback $g_t \in \partial f_t(x_t)$ received by the agents after some agent-dependent delay

- $\mathcal{S}_t^i \subseteq \{1, \ldots, t-1\}$ is the set of gradient timestamps that are available to agent *i* at time *t*
- The active agent i(t) can only compute x_t based on $\{g_s : s \in \mathcal{S}_t^{i(t)}\}$ • Let $\mathcal{S}_t = \mathcal{S}_t^{i(t)}$ and $\mathcal{U}_t = \{1, \ldots, t-1\} \setminus \mathcal{S}_t$.

Challenges

- The feedback sequence is non-monotone
- Global information (such as t) is not known by individual agents

Single-agent (M = 1)



where $\mathcal{U}_{t}^{\sigma} = \{\sigma(1), \ldots, \sigma(t)\} \setminus \mathcal{S}_{\sigma(t)}$

Ideal regret bound

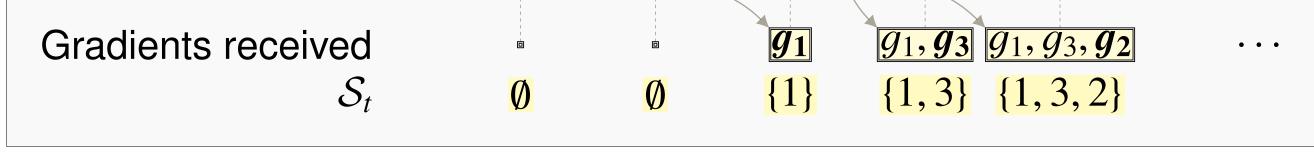
- Maximum delay τ is the longest wait to receive an element of feedback: $\tau = \min\{\tau : \{1, \ldots, t - \tau - 1\} \subseteq S_t \text{ for all } t \in \{1, \ldots, T\}\}.$
- Maximum unavailability is $v = \max_{t \in \{1,...,T\}} \operatorname{card}(\mathcal{U}_t) \leq \tau$.
- Cumulative unavailability is $D_t^{\sigma} = \sum_{s=1}^T \operatorname{card}(\mathcal{U}_s^{\sigma}) \leq vt$.

• Lag contains pairing terms of $\{\sigma(1), \ldots, \sigma(t)\}$ that are not adjacent to each other in the dependency graph. $\Lambda_t^{\sigma} = \Lambda_t^{id}$ if σ is faithful.

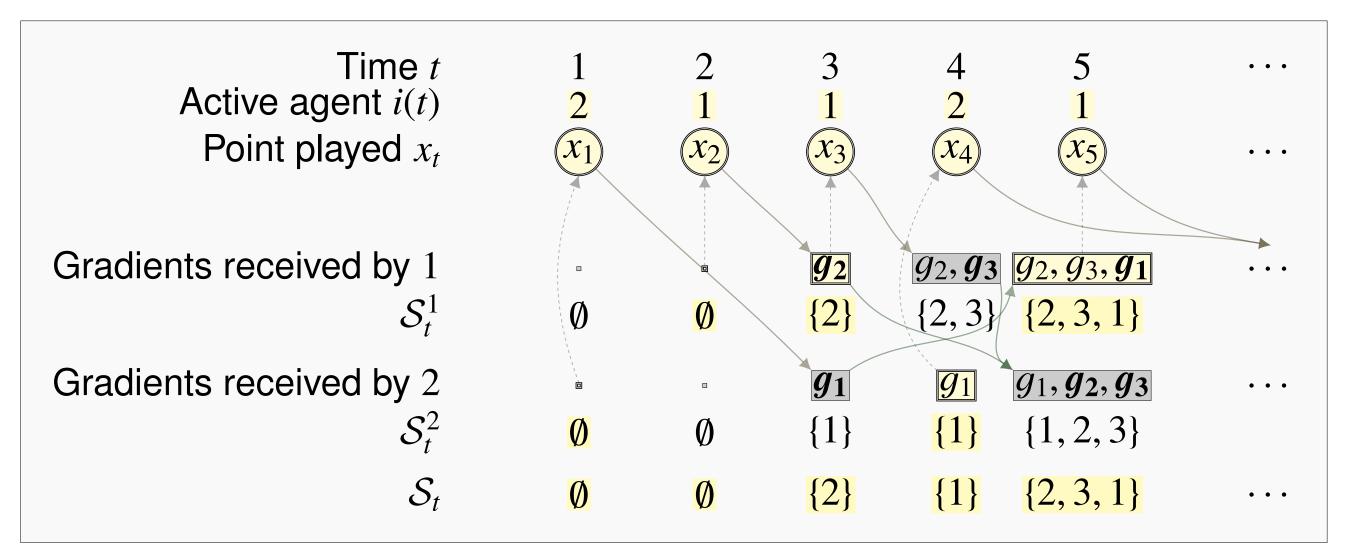
$$\Lambda_{t}^{\sigma} = \sum_{s=1}^{t} \left(\|g_{\sigma(s)}\|_{*}^{2} + 2\|g_{\sigma(s)}\|_{*} \sum_{l \in \mathcal{U}_{s}^{\sigma}} \|g_{l}\|_{*} \right)$$

Proposition. With suitably tuned constant learning rate, we get regret in $\mathcal{O}(\sqrt{\Lambda_T})$, which is in $\mathcal{O}(\sqrt{D_T})$ if feedback is bounded.

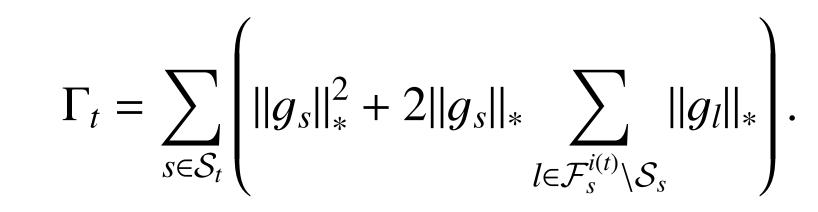
Main result: Adaptive learning rate



Multi-agent (M = 2)



- Problem: Λ_t^{σ} is not known at time $\sigma(t)$ due to delays.
- Let \mathcal{F}_t^i be the set of all feedback received before g_t by agent *i*. We approximate Λ_t^{σ} by $\Gamma_{\sigma(t)}$, where for all *t* we define



Theorem. If feedback is bounded and $\mathcal{S}_t \subseteq \mathcal{F}_t^i$, i.e., an agent receives a subgradient only after receiving all the subgradients used to compute it, then (DDA) with $\eta_t = 1/\sqrt{\Gamma_t} + \beta$ for some $\beta > 0$ guarantees $\operatorname{Reg}_T(u) = \mathcal{O}(\sqrt{\Lambda_T} + \tau^2).$