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Summary.

e Regret minimization in multi-agent environments with delayed feedback e Quantification of the impact of delay for an algorithm

that aggregates the received feedback through dual averaging e Design of adaptive methods run exclusively based one local information

e [ncreasing need for learning in a distributed fashion and in real time
- Geographically distributed large-scale learning systems
- Multi-agent systems deployed in a dynamic environment

e The feedback in the system is often delayed
- Inherent delays, computation delays, communication delays

Problem Setup

Online learning in multi-agent systems
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e Agents M = {1, ..., M}; shared constrained set X’

e Ateachtimeslotr=1,2,..., an agent i(t) € M becomes active
- The agent is requested to make a prediction x;, € X
- The agent incurs a loss f,(x;) for some convex f;

e Regret:
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Delayed feedback. Feedback g, € df:(x;) received by the agents
after some agent-dependent delay

e S'C{l,...,t— 1} is the set of gradient timestamps that are
available to agent i at time ¢

e The active agent i(r) can only compute x; based on {g, : s € Sf(”}
oletS, =S andU, ={1,....t - 1}\ S,

Challenges

e The feedback sequence is non-monotone
e Global information (such as ¢) is not known by individual agents
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Let h: X — R be a regularizer and Q(y) = arg max,_{(y, x) — h(x)} be
the mirror map induced by /. The feedback is aggregated with n; > 0.
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Dependency graph and faithful permutation

e \We view each timestamp as a node and include a directed edge
from sto ¢t if and only if s € S,

e A permutation o of {1,2,...,T}Is faithful if and only if (1), ..., o (T)
is a topological ordering of G, i.e., s € S, implies o !(s) < o7 (¥)
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Impact of Delays

If o is faithful and n,+1) < n4¢), the algorithm enjoys the regret bound
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ldeal regret bound

e Maximum delay 7 is the longest walit to receive an element of

feedback: r = min{r : {1,...,.t—7—-1}Cc S, forallr e {1,...,T}}.
e Maximum unavallability IS v = maXe ... card(Uy) < 7.
e Cumulative unavailability is D7 = 37_, cardU?) < vt.

e | ag contains pairing terms of {o(1),...,o0(¢)} that are not adjacent
to each other in the dependency graph. A7 = Al if o is faithful.
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Proposition. With suitably tuned constant learning rate, we get re-
gret in O(VAr), which is in O(+/D7) if feedback is bounded.

Main result: Adaptive learning rate

e Problem: A7 is not known at time o (¢) due to delays.

e Let F! be the set of all feedback received before g, by agent i.
We approximate A? by I',), where for all r we define
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Theorem. If feedback is bounded and S; € F, i.e., an agent re-
ceives a subgradient only after receiving all the subgradients used
to compute it, then (DDA) with n, = 1/ \/l“t + 8 for some S > 0 guar-
antees Reg (1) = O(VA7 + 7).




