Anticipating the Future for Better Performance: Optimistic Gradient Methods for Learning in Games

Yu-Guan Hsieh

Université Grenoble Alpes, France

July 5th, 2022

Optimization as Minimization

 $\min_{x \in \mathcal{X}} \ell(x)$

- Inverse problem (MRI, CT, ...)
- Power system management
- Machine learning

Optimization Beyond Minimization

Learning in an environment that is reactive Probably due to the presence of multiple agents \longrightarrow game theory

- Explicit: games, interaction of robots, autonomous vehicles
- Implicit: robust optimization, generative adversarial networks (GANs)

Motivation

Motivating Example: Generative Adversarial Networks (GANs)

• GauGAN (Nvidia):

• GauGAN (Nvidia):

• Distribution matching: Domain adaptation [Tzeng et al. 2017], Imitation learning [Ho and Ermon 2016]

• GauGAN (Nvidia):

- Distribution matching: Domain adaptation [Tzeng et al. 2017], Imitation learning [Ho and Ermon 2016]
- GANs are hard to train due to the interaction of multiple agents

• GauGAN (Nvidia):

- Distribution matching: Domain adaptation [Tzeng et al. 2017], Imitation learning [Ho and Ermon 2016]
- · GANs are hard to train due to the interaction of multiple agents
- More recently:
 - DALL-E (Open AI), Imagen (Google): Diffusion model
 - Parti (Google): Autoregressive model + GAN

A small cactus wearing a straw hat and neon sunglasses in the Sahara desert.

Motivating Example: Multi-Agent Reinforcement Learning

- Self-interest agents coexist in a shared environment
- Collaboration, coordination, competition, etc.

How to learn a good policy that performs well in a multi-agent environment?

5/28

Outline

1 Motivation

- **2** Online Learning in Games
- **3** Optimistic Gradient Methods
- 4 Adaptive and Stochastic Optimistic Gradient Methods [Our Contributions]

Disclaimer

- This presentation is about intuitions and theories
- We focus on normal-form monotone games

In this talk, we will not cover

- Experiments on real-world applications
- General-sum games
- Non-monotone landscapes
- Extensive-form games

Outline

Motivation

2 Online Learning in Games

Optimistic Gradient Methods

4 Adaptive and Stochastic Optimistic Gradient Methods [Our Contributions]

- A finite set of players: $\mathcal{N} = \{1, ..., N\}$
- Each player has a finite set of actions \mathcal{A}^i and a payoff function $u^i : \prod_{i \in \mathcal{N}} \mathcal{A}^i \to \mathbb{R}$

- A finite set of players: $\mathcal{N} = \{1, ..., N\}$
- Each player has a finite set of actions \mathcal{A}^i and a payoff function $u^i: \prod \mathcal{A}^i \to \mathbb{R}$
- Examples: Rock-Paper-Scissors

	rock	paper	scissors
rock	0,0	-1,1	1,-1
paper	1,-1	0,0	-1,1
scissors	-1,1	1,-1	0,0

- A finite set of players: $\mathcal{N} = \{1, ..., N\}$
- Each player has a finite set of actions \mathcal{A}^i and a payoff function $u^i: \prod \mathcal{A}^i \to \mathbb{R}$
- Examples: Rock-Paper-Scissors

	rock	paper	scissors
rock	0,0	-1,1	1,-1
paper	1,-1	0,0	-1,1
scissors	-1,1	1,-1	0,0

A Nash equilibrium a_⋆ = (aⁱ, a_⋆⁻ⁱ) is a joint action profile from which no player has incentive to deviate unilaterally, i.e., for all i ∈ N, aⁱ ∈ Aⁱ, uⁱ(aⁱ_⋆, a_⋆⁻ⁱ) ≥ uⁱ(aⁱ, a_⋆⁻ⁱ)

- A finite set of players: $\mathcal{N} = \{1, ..., N\}$
- Each player has a finite set of actions \mathcal{A}^i and a payoff function $u^i: \prod_i \mathcal{A}^i \to \mathbb{R}$
- Examples: Rock-Paper-Scissors

	rock	paper	scissors
rock	0,0	-1,1	1,-1
paper	1,1	0,0	-1,1
scissors	-1,1	1,-1	0,0

A Nash equilibrium a_⋆ = (aⁱ, a_⋆⁻ⁱ) is a joint action profile from which no player has incentive to deviate unilaterally, i.e., for all i ∈ N, aⁱ ∈ Aⁱ, uⁱ(aⁱ_⋆, a_⋆⁻ⁱ) ≥ uⁱ(aⁱ, a_⋆⁻ⁱ)

Continuous Games

- A finite set of players: $\mathcal{N} = \{1, ..., N\}$
- Each player has a convex closed action set $\mathcal{X}^i \subseteq \mathbb{R}^{d^i}$ and a loss function $\ell^i : \prod_{i \in \mathcal{N}} \mathcal{X}^i \to \mathbb{R}$

Continuous Games

- A finite set of players: $\mathcal{N} = \{1, ..., N\}$
- Each player has a convex closed action set $\mathcal{X}^i \subseteq \mathbb{R}^{d^i}$ and a loss function $\ell^i : \prod_{i \in \mathcal{N}} \mathcal{X}^i \to \mathbb{R}$
- Examples: Auctions, Cournot Duopoly, GANs

Continuous Games

- A finite set of players: $\mathcal{N} = \{1, ..., N\}$
- Each player has a convex closed action set $\mathcal{X}^i \subseteq \mathbb{R}^{d^i}$ and a loss function $\ell^i : \prod_{i \in \mathcal{N}} \mathcal{X}^i \to \mathbb{R}$
- Examples: Auctions, Cournot Duopoly, GANs
- A Nash equilibrium x_{*} = (xⁱ_{*}, x⁻ⁱ_{*}) is a joint action profile from which no player has incentive to deviate unilaterally, i.e., for all i ∈ N, xⁱ ∈ Xⁱ, lⁱ(xⁱ_{*}, x⁻ⁱ_{*}) ≤ lⁱ(xⁱ, x⁻ⁱ_{*})

• A mixed strategy $x^i \in \Delta(\mathcal{A}^i) \subset \mathbb{R}^{\operatorname{card}(\mathcal{A}^i)}$ for player i is a probability distribution over \mathcal{A}^i $(\Delta(\mathcal{A}^i)$ is the probability simplex on \mathcal{A}^i)

- A mixed strategy xⁱ ∈ Δ(Aⁱ) ⊂ ℝ^{card(Aⁱ)} for player i is a probability distribution over Aⁱ
 (Δ(Aⁱ) is the probability simplex on Aⁱ)
- For a joint mixed strategy \mathbf{x} , we can associate the payoff $u^i(\mathbf{x}) = \mathbb{E}_{\mathbf{a}\sim\mathbf{x}} u^i(\mathbf{a})$

- A mixed strategy xⁱ ∈ Δ(Aⁱ) ⊂ ℝ^{card(Aⁱ)} for player i is a probability distribution over Aⁱ
 (Δ(Aⁱ) is the probability simplex on Aⁱ)
- For a joint mixed strategy \mathbf{x} , we can associate the payoff $u^i(\mathbf{x}) = \mathbb{E}_{\mathbf{a}\sim\mathbf{x}} u^i(\mathbf{a})$
- Mixed strategy Nash equilibrium always exists

- A mixed strategy xⁱ ∈ Δ(Aⁱ) ⊂ ℝ^{card(Aⁱ)} for player i is a probability distribution over Aⁱ
 (Δ(Aⁱ) is the probability simplex on Aⁱ)
- For a joint mixed strategy x, we can associate the payoff $u^i(x) = \mathbb{E}_{\mathbf{a}\sim \mathbf{x}} u^i(\mathbf{a})$
- Mixed strategy Nash equilibrium always exists
- Take $\ell^i = -u^i$ to get the previous form

Notations and Assumptions

- Joint action $\mathbf{x} = (x^i)_{i \in \mathcal{N}} = (x^i, \mathbf{x}^{-i})$
- Important: we assume $\ell^i(\cdot, \mathbf{x}^{-i})$ to be convex

In previous slide,
$$\ell^i(\mathbf{x}) = -\mathbb{E}_{\mathbf{a}\sim\mathbf{x}} u^i(\mathbf{a}) = -\sum_{\mathbf{a}\in\prod_{i\in\mathcal{N}}\mathcal{A}^i} \left(\prod_{i\in\mathcal{N}} x^i(a^i)\right) u^i(\mathbf{a})$$
 is linear in x^i

Notations and Assumptions

• Joint action
$$\mathbf{x} = (x^i)_{i \in \mathcal{N}} = (x^i, \mathbf{x}^{-i})$$

• Important: we assume $\ell^i(\cdot, \mathbf{x}^{-i})$ to be convex

In previous slide,
$$\ell^i(\mathbf{x}) = -\mathbb{E}_{\mathbf{a}\sim\mathbf{x}} u^i(\mathbf{a}) = -\sum_{\mathbf{a}\in\prod_{i\in\mathcal{N}}\mathcal{A}^i} \left(\prod_{i\in\mathcal{N}} x^i(a^i)\right) u^i(\mathbf{a})$$
 is linear in x^i

• For simplicity: we consider unconstrained setup, i.e., $\mathcal{X}^i = \mathbb{R}^{d^i}$

Notations and Assumptions

• Joint action
$$\mathbf{x} = (x^i)_{i \in \mathcal{N}} = (x^i, \mathbf{x}^{-i})$$

• Important: we assume $\ell^i(\cdot, \mathbf{x}^{-i})$ to be convex

n previous slide,
$$\ell^i(\mathbf{x}) = -\mathbb{E}_{\mathbf{a}\sim\mathbf{x}} u^i(\mathbf{a}) = -\sum_{\mathbf{a}\in\prod_{i\in\mathcal{N}}\mathcal{A}^i} \left(\prod_{i\in\mathcal{N}} x^i(a^i)\right) u^i(\mathbf{a})$$
 is linear in x^i

- For simplicity: we consider unconstrained setup, i.e., $\mathcal{X}^i = \mathbb{R}^{d^i}$
- Joint vector field: $\mathbf{V}(\mathbf{X}) = (\nabla_i \ell^i(\mathbf{X}))_{i \in \mathcal{N}}$
- Nash equilibria: $\mathcal{X}_{\star} = \{\mathbf{x}_{\star} : \mathbf{V}(\mathbf{x}_{\star}) = 0\}$

```
At each round t = 1, 2, \ldots, each player i \in \mathcal{N}
```

- Plays an action $x_t^i \in \mathcal{X}^i$
- Suffers loss $\ell^i(\mathbf{x}_t)$ and receives feedback g^i_t

11/28

```
At each round t = 1, 2, \ldots, each player i \in \mathcal{N}
```

- Plays an action $x_t^i \in \mathcal{X}^i$
- Suffers loss $\ell^i(\mathbf{x}_t)$ and receives feedback g^i_t

11/28

```
At each round t = 1, 2, \ldots, each player i \in \mathcal{N}
```

- Plays an action $x_t^i \in \mathcal{X}^i$
- Suffers loss $\ell^i(\mathbf{x}_t)$ and receives feedback g^i_t


```
At each round t = 1, 2, \ldots, each player i \in \mathcal{N}
```

- Plays an action $x_t^i \in \mathcal{X}^i$
- Suffers loss $\ell^i(\mathbf{x}_t)$ and receives feedback g^i_t
- First-order feedback so that $g_t^i \approx \nabla_i \ell^i(\mathbf{x}_t)$

At each round
$$t$$
 = $1, 2, \ldots$, each player $i \in \mathcal{N}$

- Plays an action $x_t^i \in \mathcal{X}^i$
- Suffers loss $\ell^i(\mathbf{x}_t)$ and receives feedback g^i_t
- First-order feedback so that $g_t^i \approx \nabla_i \ell^i(\mathbf{x}_t)$
- Regret of player i with respect to $p^i \in \mathcal{X}^i$ is

$$\operatorname{Reg}_{T}^{i}(p^{i}) = \sum_{t=1}^{T} \left(\underbrace{\ell^{i}(x_{t}^{i}, \mathbf{x}_{t}^{-i}) - \ell^{i}(p^{i}, \mathbf{x}_{t}^{-i})}_{i} \right)$$

cost of not playing p^i in round t

At each round
$$t$$
 = $1, 2, \ldots$, each player $i \in \mathcal{N}$

- Plays an action $x_t^i \in \mathcal{X}^i$
- Suffers loss $\ell^i(\mathbf{x}_t)$ and receives feedback g^i_t
- First-order feedback so that $g_t^i \approx \nabla_i \ell^i(\mathbf{x}_t)$
- Regret of player i with respect to $p^i \in \mathcal{X}^i$ is

$$\operatorname{Reg}_{T}^{i}(p^{i}) = \sum_{t=1}^{T} \left(\underbrace{\ell^{i}(x_{t}^{i}, \mathbf{x}_{t}^{-i}) - \ell^{i}(p^{i}, \mathbf{x}_{t}^{-i})}_{\leftarrow} \right)$$

cost of not playing p^i in round t

• No-regret if $\operatorname{Reg}_T^i(p^i) = o(T)$

At each round
$$t$$
 = $1, 2, \ldots$, each player $i \in \mathcal{N}$

- Plays an action $x_t^i \in \mathcal{X}^i$
- Suffers loss $\ell^i(\mathbf{x}_t)$ and receives feedback g^i_t
- First-order feedback so that $g_t^i \approx \nabla_i \ell^i(\mathbf{x}_t)$
- Regret of player i with respect to $p^i \in \mathcal{X}^i$ is

$$\operatorname{Reg}_{T}^{i}(p^{i}) = \sum_{t=1}^{T} \left(\underbrace{\ell^{i}(x_{t}^{i}, \mathbf{x}_{t}^{-i}) - \ell^{i}(p^{i}, \mathbf{x}_{t}^{-i})}_{\frown} \right)$$

cost of not playing p^i in round t

- No-regret if $\operatorname{Reg}_T^i(p^i) = o(T)$
- Players can be adversarial or optimizing their own benefit

Online Learning

At each round $t = 1, 2, \ldots$, the learner

- Plays an action $x_t \in \mathcal{X}$
- Suffers loss $\ell_t(x_t)$ and receives feedback $g_t \ [\ell_t: \mathcal{X} \to \mathbb{R}]$

Online Learning

At each round $t = 1, 2, \ldots$, the learner

- Plays an action $x_t \in \mathcal{X}$
- Suffers loss $\ell_t(x_t)$ and receives feedback $g_t \ [\ell_t: \mathcal{X} \to \mathbb{R}]$

Online Learning

At each round $t = 1, 2, \ldots$, the learner

- Plays an action $x_t \in \mathcal{X}$
- Suffers loss $\ell_t(x_t)$ and receives feedback $g_t \ [\ell_t: \mathcal{X} \to \mathbb{R}]$

Online Learning

At each round $t = 1, 2, \ldots$, the learner

- Plays an action $x_t \in \mathcal{X}$
- Suffers loss $\ell_t(x_t)$ and receives feedback $g_t \ [\ell_t: \mathcal{X} \to \mathbb{R}]$
- First-order feedback $g_t \approx \nabla \ell_t(x_t)$

Online Learning

At each round $t = 1, 2, \ldots$, the learner

- Plays an action $x_t \in \mathcal{X}$
- Suffers loss $\ell_t(x_t)$ and receives feedback $g_t \ [\ell_t: \mathcal{X} \to \mathbb{R}]$
- First-order feedback $g_t \approx \nabla \ell_t(x_t)$
- Regret of the learner with respect to $p \in \mathcal{X}$ is

$$\operatorname{Reg}_{T}(p^{i}) = \sum_{t=1}^{T} \left(\underbrace{\ell_{t}(x_{t}) - \ell_{t}(p)}_{} \right)$$

cost of not playing p in round t

Online Learning

At each round $t = 1, 2, \ldots$, the learner

- Plays an action $x_t \in \mathcal{X}$
- Suffers loss $\ell_t(x_t)$ and receives feedback $g_t \ [\ell_t: \mathcal{X} \to \mathbb{R}]$
- First-order feedback $g_t \approx \nabla \ell_t(x_t)$
- Regret of the learner with respect to $p \in \mathcal{X}$ is

$$\operatorname{Reg}_{T}(p^{i}) = \sum_{t=1}^{T} \left(\underbrace{\ell_{t}(x_{t}) - \ell_{t}(p)}_{t} \right)$$

 cost of not playing p in round t

• The environment can be adversarial, stochastic, multi-agent $\ell_t = \ell^i(\cdot, \mathbf{x}_t^{-i})$, etc.

Outline

Motivation

- Online Learning in Games
- **3** Optimistic Gradient Methods

4 Adaptive and Stochastic Optimistic Gradient Methods [Our Contributions]

• Two-player planar bilinear zero-sum game

$$\ell^1(\mathbf{x}) = -\ell^2(\mathbf{x}) = \theta\phi \ [\mathbf{x} = (\theta, \phi) \in \mathbb{R}^2]$$

Unique Nash equilibrium: (0,0)

• Two-player planar bilinear zero-sum game

$$\ell^{1}(\mathbf{x}) = -\ell^{2}(\mathbf{x}) = \theta\phi \ [\mathbf{x} = (\theta, \phi) \in \mathbb{R}^{2}]$$

• Joint vector field

$$\mathbf{V}(\mathbf{x}) \coloneqq (
abla_{ heta} \, \ell^1(\mathbf{x}),
abla_{\phi} \, \ell^2(\mathbf{x})) = (\phi, -\theta)$$

• Two-player planar bilinear zero-sum game

$$\ell^1(\mathbf{x}) = -\ell^2(\mathbf{x}) = \theta\phi \ [\mathbf{x} = (\theta, \phi) \in \mathbb{R}^2]$$

• Joint vector field

$$\mathbf{V}(\mathbf{x}) \coloneqq (\nabla_{\theta} \, \ell^1(\mathbf{x}), \nabla_{\phi} \, \ell^2(\mathbf{x})) = (\phi, -\theta)$$

Gradient descent

$$\begin{aligned} \theta_{t+1} &= \theta_t - \eta_t \, \nabla_\theta \, \ell^1(\theta_t, \phi_t) \\ \phi_{t+1} &= \phi_t - \eta_t \, \nabla_\phi \, \ell^2(\theta_t, \phi_t) \end{aligned}$$

• Two-player planar bilinear zero-sum game

$$\ell^1(\mathbf{x}) = -\ell^2(\mathbf{x}) = \theta\phi \ [\mathbf{x} = (\theta, \phi) \in \mathbb{R}^2]$$

• Joint vector field

$$\mathbf{V}(\mathbf{x}) \coloneqq (\nabla_{\theta} \, \ell^1(\mathbf{x}), \nabla_{\phi} \, \ell^2(\mathbf{x})) = (\phi, -\theta)$$

Gradient descent

$$\mathbf{X}_{t+1} = \mathbf{X}_t - \eta_t \mathbf{V}(\mathbf{X}_t)$$

• Two-player planar bilinear zero-sum game

$$\ell^{1}(\mathbf{x}) = -\ell^{2}(\mathbf{x}) = \theta\phi \ [\mathbf{x} = (\theta, \phi) \in \mathbb{R}^{2}]$$

• Joint vector field

$$\mathbf{V}(\mathbf{x}) \coloneqq (\nabla_{\theta} \, \ell^1(\mathbf{x}), \nabla_{\phi} \, \ell^2(\mathbf{x})) = (\phi, -\theta)$$

Gradient descent

$$\mathbf{X}_{t+1} = \mathbf{X}_t - \eta_t \mathbf{V}(\mathbf{X}_t)$$

• Two-player planar bilinear zero-sum game

$$\ell^{1}(\mathbf{x}) = -\ell^{2}(\mathbf{x}) = \theta\phi \ [\mathbf{x} = (\theta, \phi) \in \mathbb{R}^{2}]$$

• Joint vector field

$$\mathbf{V}(\mathbf{x}) \coloneqq (
abla_{ heta} \ell^1(\mathbf{x}),
abla_{\phi} \ell^2(\mathbf{x})) = (\phi, - heta)$$

$$\mathbf{X}_{t+\frac{1}{2}} = \mathbf{X}_t - \eta_t \mathbf{V}(\mathbf{X}_t) \xrightarrow{-\eta_t \mathbf{V}(\mathbf{X}_t)} \mathbf{X}_{t+1} = \mathbf{X}_t - \eta_t \mathbf{V}(\mathbf{X}_{t+\frac{1}{2}}) \xrightarrow{\mathbf{X}_t} \mathbf{X}_t$$

• Two-player planar bilinear zero-sum game

$$\ell^{1}(\mathbf{x}) = -\ell^{2}(\mathbf{x}) = \theta\phi \ [\mathbf{x} = (\theta, \phi) \in \mathbb{R}^{2}]$$

Joint vector field

$$\mathbf{V}(\mathbf{x}) \coloneqq (\nabla_{\theta} \, \ell^1(\mathbf{x}), \nabla_{\phi} \, \ell^2(\mathbf{x})) = (\phi, -\theta)$$

$$\mathbf{X}_{t+\frac{1}{2}} = \mathbf{X}_t - \eta_t \mathbf{V}(\mathbf{X}_t) \xrightarrow{\mathbf{X}_{t+\frac{1}{2}}} -\eta_t \mathbf{V}(\mathbf{X}_t) \xrightarrow{\boldsymbol{\eta}_t \mathbf{V}(\mathbf{X}_{t+\frac{1}{2}})} \mathbf{X}_{t+1} = \mathbf{X}_t - \eta_t \mathbf{V}(\mathbf{X}_{t+\frac{1}{2}}) \xrightarrow{\mathbf{X}_{t+\frac{1}{2}}} \mathbf{X}_t$$

• Two-player planar bilinear zero-sum game

$$\ell^{1}(\mathbf{x}) = -\ell^{2}(\mathbf{x}) = \theta\phi \ [\mathbf{x} = (\theta, \phi) \in \mathbb{R}^{2}]$$

Joint vector field

$$\mathbf{V}(\mathbf{x}) \coloneqq (\nabla_{\theta} \, \ell^1(\mathbf{x}), \nabla_{\phi} \, \ell^2(\mathbf{x})) = (\phi, -\theta)$$

$$\mathbf{X}_{t+\frac{1}{2}} = \mathbf{X}_{t} - \eta_{t} \mathbf{V}(\mathbf{X}_{t}) \xrightarrow{-\eta_{t} \mathbf{V}(\mathbf{X}_{t})} \xrightarrow{\eta_{t} \mathbf{V}(\mathbf{X}_{t+\frac{1}{2}})} \xrightarrow{\eta_{t} \mathbf{V}(\mathbf{X}_{t+\frac{1}{2}})} \xrightarrow{\mathbf{X}_{t+\frac{1}{2}}} \xrightarrow{\mathbf{X}_{t+1}} \xrightarrow{\mathbf{X}_{t+1}} \xrightarrow{\mathbf{V}(\mathbf{X}_{t+\frac{1}{2}})} \xrightarrow{\mathbf{X}_{t+\frac{1}{2}}} \xrightarrow{\mathbf{X}_{t+1}} \xrightarrow{\mathbf{V}(\mathbf{X}_{t+\frac{1}{2}})} \xrightarrow{\mathbf{X}_{t+\frac{1}{2}}} \xrightarrow{\mathbf{X}_{t+$$

• Two-player planar bilinear zero-sum game

$$\ell^{1}(\mathbf{x}) = -\ell^{2}(\mathbf{x}) = \theta\phi \ [\mathbf{x} = (\theta, \phi) \in \mathbb{R}^{2}]$$

Joint vector field

$$\mathbf{V}(\mathbf{x}) \coloneqq (\nabla_{\theta} \, \ell^1(\mathbf{x}), \nabla_{\phi} \, \ell^2(\mathbf{x})) = (\phi, -\theta)$$

$$\mathbf{X}_{t+\frac{1}{2}} = \mathbf{X}_{t} - \eta_{t} \mathbf{V}(\mathbf{X}_{t}) \xrightarrow{-\eta_{t} \mathbf{V}(\mathbf{X}_{t})} \xrightarrow{\eta_{t} \mathbf{V}(\mathbf{X}_{t+\frac{1}{2}})} \xrightarrow{\eta_{t} \mathbf{V}(\mathbf{X}_{t+\frac{1}{2}})} \xrightarrow{\eta_{t} \mathbf{V}(\mathbf{X}_{t+\frac{1}{2}})} \xrightarrow{\mathbf{X}_{t+1}} \xrightarrow{\mathbf{X}_{t+1}} \xrightarrow{\mathbf{V}(\mathbf{X}_{t+\frac{1}{2}})} \xrightarrow{\mathbf{X}_{t+1}} \xrightarrow{\mathbf{V}(\mathbf{X}_{t+\frac{1}{2}})} \xrightarrow{\mathbf{X}_{t+\frac{1}{2}}} \xrightarrow{\mathbf{X}_{t+\frac{1}{2}}$$

• Two-player planar bilinear zero-sum game ^{2.0}

$$\ell^{1}(\mathbf{x}) = -\ell^{2}(\mathbf{x}) = \theta\phi \ [\mathbf{x} = (\theta, \phi) \in \mathbb{R}^{2}]$$

1.5 1.0

• Extra-gradient [Korpelevich 1976]

$$\mathbf{X}_{t+\frac{1}{2}} = \mathbf{X}_{t} - \eta_{t} \mathbf{V}(\mathbf{X}_{t})$$

$$-\eta_{t} \mathbf{V}(\mathbf{X}_{t})$$

$$-\eta_{t} \mathbf{V}(\mathbf{X}_{t+\frac{1}{2}})$$

$$\mathbf{X}_{t+1} = \mathbf{X}_{t} - \eta_{t} \mathbf{V}(\mathbf{X}_{t+\frac{1}{2}})$$

$$-\eta_{t} \mathbf{V}(\mathbf{X}_{t+\frac{1}{2}})$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.5$$

$$-1.$$

• Jo

Optimistic Gradient: Online Variant of Extra-Gradient

• Two-player planar bilinear zero-sum game

$$\ell^1(\mathbf{x}) = -\ell^2(\mathbf{x}) = \theta\phi \ [\mathbf{x} = (\theta, \phi) \in \mathbb{R}^2]$$

Joint vector field

$$\mathbf{V}(\mathbf{x}) \coloneqq (\nabla_{\theta} \, \ell^1(\mathbf{x}), \nabla_{\phi} \, \ell^2(\mathbf{x})) = (\phi, -\theta)$$

• OG – Optimistic gradient [Popov 1980]

$$\mathbf{X}_{t+\frac{1}{2}} = \mathbf{X}_t - \eta_t \mathbf{V}(\mathbf{X}_{t-\frac{1}{2}})$$
$$\mathbf{X}_{t+1} = \mathbf{X}_t - \eta_{t+1} \mathbf{V}(\mathbf{X}_{t+\frac{1}{2}})$$

Optimistic Gradient: Online Variant of Extra-Gradient

• Two-player planar bilinear zero-sum game

$$\ell^1(\mathbf{x}) = -\ell^2(\mathbf{x}) = \theta\phi \ [\mathbf{x} = (\theta, \phi) \in \mathbb{R}^2]$$

Joint vector field

$$\mathbf{V}(\mathbf{x}) \coloneqq (
abla_{ heta} \, \ell^1(\mathbf{x}),
abla_{\phi} \, \ell^2(\mathbf{x})) = (\phi, - heta)$$

• OG – Optimistic gradient [Popov 1980]

$$X^{i}_{t+\frac{1}{2}} = X^{i}_{t-\frac{1}{2}} - 2\eta^{i}_{t}g^{i}_{t} + \eta^{i}_{t-1}g^{i}_{t-1} \quad (x^{i}_{t} = X^{i}_{t+\frac{1}{2}}$$

Optimistic Gradient: Online Variant of Extra-Gradient

• Two-player planar bilinear zero-sum game

$$\ell^1(\mathbf{x}) = -\ell^2(\mathbf{x}) = \theta\phi \ [\mathbf{x} = (\theta, \phi) \in \mathbb{R}^2]$$

Joint vector field

$$\mathbf{V}(\mathbf{x}) \coloneqq (
abla_{ heta} \, \ell^1(\mathbf{x}),
abla_{\phi} \, \ell^2(\mathbf{x})) = (\phi, - heta)$$

• OG – Optimistic gradient [Popov 1980]

$$X^{i}_{t+\frac{1}{2}} = X^{i}_{t-\frac{1}{2}} - 2\eta^{i}_{t}g^{i}_{t} + \eta^{i}_{t-1}g^{i}_{t-1} \quad (x^{i}_{t} = X^{i}_{t+\frac{1}{2}}$$

• Better discretization of the continuous flow [Lu 21]

- Better discretization of the continuous flow [Lu 21]
- Look into the future, anticipating the landscape

- Better discretization of the continuous flow [Lu 21]
- Look into the future, anticipating the landscape
 - Learning with recency bias [Rakhlin and Sridharan 13, Syrgkanis et al. 15] Compare with methods that 'knows the future'

- Better discretization of the continuous flow [Lu 21]
- Look into the future, anticipating the landscape
 - Learning with recency bias [Rakhlin and Sridharan 13, Syrgkanis et al. 15] Compare with methods that 'knows the future'
 - Approximation of proximal point (PP) methods [Mokhtari et al. 20]

- Better discretization of the continuous flow [Lu 21]
- Look into the future, anticipating the landscape
 - Learning with recency bias [Rakhlin and Sridharan 13, Syrgkanis et al. 15] Compare with methods that 'knows the future'
 - Approximation of proximal point (PP) methods [Mokhtari et al. 20]
- Relaxed projection onto a separating hyperplan [Tseng 00, Facchinei and Pang 03]

$$\mathbf{X}_{t+\frac{1}{2}} = \mathbf{X}_t - \eta_t \mathbf{V}_t, \quad \mathbf{X}_{t+1} = \mathbf{X}_t - \eta_{t+1} \mathbf{V}(\mathbf{X}_{t+\frac{1}{2}})$$

Relaxed projection onto a separating hyperplan [Tseng 00, Facchinei and Pang 03]

$$\mathbf{X}_{t+\frac{1}{2}} = \mathbf{X}_t - \eta_t \mathbf{V}_t, \quad \mathbf{X}_{t+1} = \mathbf{X}_t - \eta_{t+1} \mathbf{V}(\mathbf{X}_{t+\frac{1}{2}})$$

Relaxed projection onto a separating hyperplan [Tseng 00, Facchinei and Pang 03]

• Consider the hyperplan

$$\mathcal{H} \coloneqq \{ \mathbf{x} : \langle \mathbf{V}(\mathbf{X}_{t+\frac{1}{2}}), \mathbf{X}_{t+\frac{1}{2}} - \mathbf{x} \rangle = 0 \}$$

$$\mathbf{x}_{t+\frac{1}{2}}$$

$$\mathbf{x}_{t+\frac{1}{2}}$$

$$\mathbf{v}(\mathbf{X}_{t+\frac{1}{2}})$$

 \mathbf{i}

$$\mathbf{X}_{t+\frac{1}{2}} = \mathbf{X}_t - \eta_t \mathbf{V}_t, \quad \mathbf{X}_{t+1} = \mathbf{X}_t - \eta_{t+1} \mathbf{V}(\mathbf{X}_{t+\frac{1}{2}})$$

Relaxed projection onto a separating hyperplan [Tseng 00, Facchinei and Pang 03]

• Consider the hyperplan

$$\begin{split} \mathcal{H} \coloneqq \{ \mathbf{x} : \langle \mathbf{V}(\mathbf{X}_{t+\frac{1}{2}}), \mathbf{X}_{t+\frac{1}{2}} - \mathbf{x} \rangle = 0 \} \\ \bullet \text{ Assumption: } \langle \mathbf{V}(\mathbf{X}_{t+\frac{1}{2}}), \mathbf{X}_{t+\frac{1}{2}} - \mathbf{x}_{\star} \rangle \geq 0 \end{split}$$

$$\mathbf{X}_{t+\frac{1}{2}} = \mathbf{X}_t - \eta_t \mathbf{V}_t, \quad \mathbf{X}_{t+1} = \mathbf{X}_t - \eta_{t+1} \mathbf{V}(\mathbf{X}_{t+\frac{1}{2}})$$

Relaxed projection onto a separating hyperplan [Tseng 00, Facchinei and Pang 03]

• Consider the hyperplan

$$\mathcal{H} \coloneqq \{\mathbf{x} : \langle \mathbf{V}(\mathbf{X}_{t+\frac{1}{2}}), \mathbf{X}_{t+\frac{1}{2}} - \mathbf{x} \rangle = 0\}$$

• Assumption: $\langle \mathbf{V}(\mathbf{X}_{t+\frac{1}{2}}), \mathbf{X}_{t+\frac{1}{2}} - \mathbf{x}_{\star} \rangle \ge 0$ Monotone: $\langle \mathbf{V}(\mathbf{x}') - \mathbf{V}(\mathbf{x}), \mathbf{x}' - \mathbf{x} \rangle \ge 0$

$$\mathbf{X}_{t+\frac{1}{2}} = \mathbf{X}_t - \eta_t \mathbf{V}_t, \quad \mathbf{X}_{t+1} = \mathbf{X}_t - \eta_{t+1} \mathbf{V}(\mathbf{X}_{t+\frac{1}{2}})$$

Relaxed projection onto a separating hyperplan [Tseng 00, Facchinei and Pang 03]

• Consider the hyperplan

$$\begin{aligned} \mathcal{H} \coloneqq \{ \mathbf{x} : \langle \mathbf{V}(\mathbf{X}_{t+\frac{1}{2}}), \mathbf{X}_{t+\frac{1}{2}} - \mathbf{x} \rangle = 0 \} \\ \bullet \text{ Assumption: } \langle \mathbf{V}(\mathbf{X}_{t+\frac{1}{2}}), \mathbf{X}_{t+\frac{1}{2}} - \mathbf{x}_{\star} \rangle \geq 0 \end{aligned}$$

• If
$$\mathbf{V}(\mathbf{X}_{t+\frac{1}{2}}) \approx \mathbf{V}_t$$
 then
 $\langle \mathbf{V}(\mathbf{X}_{t+\frac{1}{2}}), \mathbf{X}_{t+\frac{1}{2}} - \mathbf{X}_t \rangle = -\eta_{t+1} \langle \mathbf{V}(\mathbf{X}_{t+\frac{1}{2}}), \mathbf{V}_t \rangle \leq 0$

$$\mathbf{X}_{t+\frac{1}{2}} = \mathbf{X}_t - \eta_t \mathbf{V}_t, \quad \mathbf{X}_{t+1} = \mathbf{X}_t - \eta_{t+1} \mathbf{V}(\mathbf{X}_{t+\frac{1}{2}})$$

Relaxed projection onto a separating hyperplan [Tseng 00, Facchinei and Pang 03]

• Consider the hyperplan

$$\begin{aligned} \mathcal{H} &\coloneqq \{\mathbf{x} : \langle \mathbf{V}(\mathbf{X}_{t+\frac{1}{2}}), \mathbf{X}_{t+\frac{1}{2}} - \mathbf{x} \rangle = 0 \} \\ \text{Assumption: } \langle \mathbf{V}(\mathbf{X}_{t+\frac{1}{2}}), \mathbf{X}_{t+\frac{1}{2}} - \mathbf{x}_{\star} \rangle \geq 0 \\ \text{If } \mathbf{V}(\mathbf{X}_{t+\frac{1}{2}}) \approx \mathbf{V}_t \text{ then} \\ \langle \mathbf{V}(\mathbf{X}_{t+\frac{1}{2}}), \mathbf{X}_{t+\frac{1}{2}} - \mathbf{X}_t \rangle = -\eta_{t+1} \langle \mathbf{V}(\mathbf{X}_{t+\frac{1}{2}}), \mathbf{V}_t \rangle \leq 0 \\ \text{Lipschiz: } \|\mathbf{V}(\mathbf{x}') - \mathbf{V}(\mathbf{x})\| \leq \beta \|\mathbf{x}' - \mathbf{x}\| \end{aligned}$$

17 / 28

$$\mathbf{X}_{t+\frac{1}{2}} = \mathbf{X}_t - \eta_t \mathbf{V}_t, \quad \mathbf{X}_{t+1} = \mathbf{X}_t - \eta_{t+1} \mathbf{V}(\mathbf{X}_{t+\frac{1}{2}})$$

Relaxed projection onto a separating hyperplan [Tseng 00, Facchinei and Pang 03]

• Consider the hyperplan

$$\mathcal{H} \coloneqq \{ \mathbf{x} : \langle \mathbf{V}(\mathbf{X}_{t+\frac{1}{2}}), \mathbf{X}_{t+\frac{1}{2}} - \mathbf{x} \rangle = 0$$

- Assumption: $\langle \mathbf{V}(\mathbf{X}_{t+\frac{1}{2}}), \mathbf{X}_{t+\frac{1}{2}} \mathbf{x}_{\star} \rangle \ge 0$
- If $\mathbf{V}(\mathbf{X}_{t+\frac{1}{2}}) \approx \mathbf{V}_t$ then $\langle \mathbf{V}(\mathbf{X}_{t+\frac{1}{2}}), \mathbf{X}_{t+\frac{1}{2}} - \mathbf{X}_t \rangle = -\eta_{t+1} \langle \mathbf{V}(\mathbf{X}_{t+\frac{1}{2}}), \mathbf{V}_t \rangle \leq 0$

• The update step moves the iterate closer to the solutions

- Bounded gradient feedback: $\exists G > 0, \forall t, g_t^i \leq G$
- Learning rate $\eta_t = \Theta(1/\sqrt{t})$
- $\mathcal{O}(\sqrt{t})$ minimax-optimal regret in the adversarial regime

	Adversarial	Same algorithm $+$ Lipschitz operator $+$ M			
	Bounded feedback Reg_t/t	Reg_t/t	$\ \mathbf{V}(\mathbf{x}_t)\ $	$\frac{Strongly\;M}{\mathrm{dist}(\mathbf{x}_t,\mathcal{X}_\star)}$	Error bound $\operatorname{dist}(\mathbf{x}_t, \mathcal{X}_\star)$
GD	$1/\sqrt{t}$	×	×	$e^{- ho_1 t}$	×
OG	$1/\sqrt{t}$ Chiang et al. 12	1/t H. et al. 19	$1/\sqrt{t}$ Cai et al. 22	$e^{- ho_2 t}~(ho_2\geq ho_1)$ Mokhtari et al. 20	$e^{- ho t}$ Wei et al. 21

- Joint vector field: $\mathbf{V}(\mathbf{X}) = (\nabla_i \ell^i(\mathbf{X}))_{i \in \mathcal{N}}$; Nash equilibria: \mathcal{X}_{\star}
- Lipschitz operator: $\|\mathbf{V}(\mathbf{x}') \mathbf{V}(\mathbf{x})\| \le \beta \|\mathbf{x}' \mathbf{x}\|$
- Monotone (M): $\langle \mathbf{V}(\mathbf{x}') \mathbf{V}(\mathbf{x}), \mathbf{x}' \mathbf{x} \rangle \ge 0$

	Adversarial	Same algorithm + Lipschitz operator + M			
	Bounded feedback Reg_t/t	Reg_t/t	$\ \mathbf{V}(\mathbf{x}_t)\ $	$\frac{Strongly\;M}{\mathrm{dist}(\mathbf{x}_t,\mathcal{X}_\star)}$	Error bound $\operatorname{dist}(\mathbf{x}_t, \mathcal{X}_\star)$
GD	$1/\sqrt{t}$	×	×	$e^{- ho_1 t}$	×
OG	$1/\sqrt{t}$ Chiang et al. 12	1/t H. et al. 19	$1/\sqrt{t}$ Cai et al. 22	$e^{- ho_2 t}~(ho_2\geq ho_1)$ Mokhtari et al. 20	$e^{- ho t}$ Wei et al. 21

- Joint vector field: $\mathbf{V}(\mathbf{X}) = (\nabla_i \ell^i(\mathbf{X}))_{i \in \mathcal{N}}$; Nash equilibria: \mathcal{X}_{\star}
- Lipschitz operator: $\|\mathbf{V}(\mathbf{x}') \mathbf{V}(\mathbf{x})\| \le \beta \|\mathbf{x}' \mathbf{x}\|$
- OG achieves constant regret

	Adversarial	Same algorithm $+$ Lipschitz operator $+$ M			
	Bounded feedback Reg_t/t	Reg_t/t	$\ \mathbf{V}(\mathbf{x}_t)\ $	Strongly M $\operatorname{dist}(\mathbf{x}_t, \mathcal{X}_\star)$	Error bound $\operatorname{dist}(\mathbf{x}_t, \mathcal{X}_\star)$
GD	$1/\sqrt{t}$	×	×	$e^{- ho_1 t}$	×
OG	$1/\sqrt{t}$ Chiang et al. 12	<mark>1/t</mark> H. et al. 19	$1/\sqrt{t}$ Cai et al. 22	$e^{- ho_2 t}~(ho_2\geq ho_1)$ Mokhtari et al. 20	$e^{- ho t}$ Wei et al. 21

- Joint vector field: $\mathbf{V}(\mathbf{X}) = (\nabla_i \ell^i(\mathbf{X}))_{i \in \mathcal{N}}$; Nash equilibria: \mathcal{X}_{\star}
- Lipschitz operator: $\|\mathbf{V}(\mathbf{x}') \mathbf{V}(\mathbf{x})\| \le \beta \|\mathbf{x}' \mathbf{x}\|$
- OG achieves last-iterate convergence

	Adversarial	Same	Same algorithm $+$ Lipschitz operator $+$ M			
	Bounded feedback Reg_t/t	Reg_t/t	$\ \mathbf{V}(\mathbf{x}_t)\ $	Strongly M $\operatorname{dist}(\mathbf{x}_t, \mathcal{X}_\star)$	Error bound $\operatorname{dist}(\mathbf{x}_t, \mathcal{X}_\star)$	
GD	$1/\sqrt{t}$	×	×	$e^{- ho_1 t}$	×	
OG	$1/\sqrt{t}$	1/t	$1/\sqrt{t}$	$e^{-\rho_2 t} \ (\rho_2 \ge \rho_1)$	$e^{- ho t}$	
	Chiang et al. 12	H. et al. 19	Cai et al. 22	Mokhtari et al. 20	Wei et al. 21	

- Joint vector field: $\mathbf{V}(\mathbf{X}) = (\nabla_i \ell^i(\mathbf{X}))_{i \in \mathcal{N}}$; Nash equilibria: \mathcal{X}_{\star}
- Lipschitz operator: $\|\mathbf{V}(\mathbf{x}') \mathbf{V}(\mathbf{x})\| \le \beta \|\mathbf{x}' \mathbf{x}\|$
- Strongly monotone: $\exists \alpha > 0, \langle \mathbf{V}(\mathbf{x}') \mathbf{V}(\mathbf{x}), \mathbf{x}' \mathbf{x} \rangle \ge \alpha \|\mathbf{x}' \mathbf{x}\|^2$

	Adversarial	Same algorithm $+$ Lipschitz operator $+$ M			
	Bounded feedback Reg_t/t	Reg_t/t	$\ \mathbf{V}(\mathbf{x}_t)\ $	$\frac{Strongly\;M}{\mathrm{dist}(\mathbf{x}_t,\mathcal{X}_\star)}$	Error bound $\operatorname{dist}(\mathbf{x}_t, \mathcal{X}_\star)$
GD	$1/\sqrt{t}$	×	×	$e^{- ho_1 t}$	×
OG	$1/\sqrt{t}$ Chiang et al. 12	1/t H. et al. 19	$1/\sqrt{t}$ Cai et al. 22	$e^{- ho_2 t} \left(ho_2 \ge ho_1 ight)$ Mokhtari et al. 20	$e^{- ho t}$ Wei et al. 21

- Joint vector field: $\mathbf{V}(\mathbf{X}) = (\nabla_i \ell^i(\mathbf{X}))_{i \in \mathcal{N}}$; Nash equilibria: \mathcal{X}_{\star}
- Lipschitz operator: $\|\mathbf{V}(\mathbf{x}') \mathbf{V}(\mathbf{x})\| \le \beta \|\mathbf{x}' \mathbf{x}\|$
- Error bound / Metric (sub-)regularity: $\exists \tau > 0, \|\mathbf{V}(\mathbf{x})\| \ge \tau \operatorname{dist}(\mathbf{x}, \mathcal{X}_{\star})$

	Adversarial	Same	Same algorithm $+$ Lipschitz operator $+$ M				
	Bounded feedback Reg_t/t	Reg_t/t	$\ \mathbf{V}(\mathbf{x}_t)\ $	Strongly M $\operatorname{dist}(\mathbf{x}_t, \mathcal{X}_\star)$	$\frac{Error \ bound}{\mathrm{dist}(\mathbf{x}_t, \mathcal{X}_\star)}$		
GD	$1/\sqrt{t}$	×	×	$e^{- ho_1 t}$	×		
06	$1/\sqrt{t}$	1/t	$1/\sqrt{t}$	$e^{-\rho_2 t} \ (\rho_2 \ge \rho_1)$	$e^{- ho t}$		
00	Chiang et al. 12	H. et al. 19	Cai et al. 22	Mokhtari et al. 20	Wei et al. 21		

Outline

Motivation

- 2 Online Learning in Games
- 3 Optimistic Gradient Methods

4 Adaptive and Stochastic Optimistic Gradient Methods [Our Contributions]

Jérôme Malick Franck lutzeler Panaytois Kimon Volkan Cevher Mertikopoulos Antonakopoulos

- 1 Y-G H., K. Antonakopoulos., V. Cevher, and P. Mertikopoulos. *No-Regret Learning in Games with Noisy Feedback: Faster Rates and Adaptivity via Learning Rate Separation.* arXiv preprint arXiv:2206.06015, 2022.
- 2 Y-G H., K. Antonakopoulos., and P. Mertikopoulos. *Adaptive Learning in Continuous Games: Optimal Regret Bounds and Convergence to Nash Equilibrium.* In **COLT**, 2021.
- **3** Y-G H., F. lutzeler, J. Malick, and P. Mertikopoulos. *Explore Aggressively, Update Conservatively: Stochastic Extragradient Methods with Variable Stepsize Scaling.* In **NeurIPS**, 2020.
- Y-G H., F. lutzeler, J. Malick, and P. Mertikopoulos. On the Convergence of Single-Call Stochastic Extra-Gradient Methods. In NeurIPS, 2019.

Consider the same bilinear problem

$$\ell^1(\mathbf{x}) = -\ell^2(\mathbf{x}) = \theta \phi \ [\mathbf{x} = (\theta, \phi) \in \mathbb{R}^2]$$

Consider the same bilinear problem

$$\ell^{1}(\mathbf{x}) = -\ell^{2}(\mathbf{x}) = \theta\phi \ [\mathbf{x} = (\theta, \phi) \in \mathbb{R}^{2}]$$

• Fast convergence is guaranteed with suitably tune learning rate

Consider the same bilinear problem

$$\ell^1(\mathbf{x}) = -\ell^2(\mathbf{x}) = \theta\phi \ [\mathbf{x} = (\theta, \phi) \in \mathbb{R}^2]$$

- Fast convergence is guaranteed with suitably tune learning rate
- But small perturbation can result in divergence

20 / 28

Consider the same bilinear problem

$$\ell^1(\mathbf{x}) = -\ell^2(\mathbf{x}) = \theta\phi \ [\mathbf{x} = (\theta, \phi) \in \mathbb{R}^2]$$

- Fast convergence is guaranteed with suitably tune learning rate
- But small perturbation can result in divergence
- Robustness to adversarial requires vanishing learning rate that causes slow convergence

20 / 28

Adaptive Optimistic Dual Averaging

• OptDA – Optimistic dual averaging

Adaptive Optimistic Dual Averaging

• OptDA – Optimistic dual averaging

$$\begin{split} X^{i}_{t+\frac{1}{2}} &= X^{i}_{t} - \eta^{i}_{t}g^{i}_{t-1} \\ X^{i}_{t+1} &= X^{i}_{1} - \eta^{i}_{t+1}\sum_{s=1}^{t}g^{i}_{s} \end{split}$$

AdaOptDA uses learning rate

$$\eta_t^i = \frac{1}{\sqrt{1 + \sum_{s=1}^{t-1} \|g_s^i - g_{s-1}^i\|^2}}$$

Adaptive Optimistic Dual Averaging

• OptDA – Optimistic dual averaging

$$\begin{split} X^{i}_{t+\frac{1}{2}} &= X^{i}_{t} - \eta^{i}_{t}g^{i}_{t-1} \\ X^{i}_{t+1} &= X^{i}_{1} - \eta^{i}_{t+1}\sum_{s=1}^{t}g^{i}_{s} \end{split}$$

AdaOptDA uses learning rate

$$\eta_t^i = \frac{1}{\sqrt{1 + \sum_{s=1}^{t-1} \|g_s^i - g_{s-1}^i\|^2}}$$

Second Issue: Stochasticity Breaks Optimistic Gradient

• Draw $\mathcal{L}_1(\mathbf{x}) = 3\theta\phi$ or $\mathcal{L}_2(\mathbf{x}) = -\theta\phi$ with equal probability so

$$\ell^1 = -\ell^2 = (\mathcal{L}_1 + \mathcal{L}_2)/2 = \theta\phi$$

Second Issue: Stochasticity Breaks Optimistic Gradient

• Draw $\mathcal{L}_1(\mathbf{x}) = 3\theta\phi$ or $\mathcal{L}_2(\mathbf{x}) = -\theta\phi$ with equal probability so

$$\ell^1 = -\ell^2 = (\mathcal{L}_1 + \mathcal{L}_2)/2 = \theta\phi$$

• Stochastic estimate $\mathbb{E}[\hat{\mathbf{V}}_{t+\frac{1}{2}}] = \mathbf{V}(\mathbf{X}_{t+\frac{1}{2}})$

$$\hat{\mathbf{V}}_{t+\frac{1}{2}} = \begin{cases} (3\phi_{t+\frac{1}{2}}, -3\theta_{t+\frac{1}{2}}) & \text{ with prob. } 1/2 \\ (-\phi_{t+\frac{1}{2}}, \theta_{t+\frac{1}{2}}) & \text{ with prob. } 1/2 \end{cases}$$

Second Issue: Stochasticity Breaks Optimistic Gradient

• Draw $\mathcal{L}_1(\mathbf{x}) = 3\theta\phi$ or $\mathcal{L}_2(\mathbf{x}) = -\theta\phi$ with equal probability so

$$\ell^1 = -\ell^2 = (\mathcal{L}_1 + \mathcal{L}_2)/2 = \theta\phi$$

• Stochastic estimate $\mathbb{E}[\hat{\mathbf{V}}_{t+\frac{1}{2}}] = \mathbf{V}(\mathbf{X}_{t+\frac{1}{2}})$

$$\hat{\mathbf{V}}_{t+\frac{1}{2}} = \begin{cases} (3\phi_{t+\frac{1}{2}}, -3\theta_{t+\frac{1}{2}}) & \text{ with prob. } 1/2 \\ (-\phi_{t+\frac{1}{2}}, \theta_{t+\frac{1}{2}}) & \text{ with prob. } 1/2 \end{cases}$$

• Optimistic gradient $[\mathbf{x}_t = \mathbf{X}_{t+\frac{1}{2}}]$

$$\mathbf{X}_{t+\frac{1}{2}} = \mathbf{X}_t - \eta_t \hat{\mathbf{V}}_{t-\frac{1}{2}}, \quad \mathbf{X}_{t+1} = \mathbf{X}_t - \eta_{t+1} \hat{\mathbf{V}}_{t+\frac{1}{2}}$$

Scale Separation as a Remedy

• Draw
$$\mathcal{L}_1(\mathbf{x}) = 3\theta\phi$$
 or $\mathcal{L}_2(\mathbf{x}) = -\theta\phi$ with equal probability so

$$\ell^{1} = -\ell^{2} = (\mathcal{L}_{1} + \mathcal{L}_{2})/2$$
• OG+ $[\mathbf{x}_{t} = \mathbf{X}_{t+\frac{1}{2}}]$

$$\mathbf{X}_{t+\frac{1}{2}} = \mathbf{X}_{t} - \underline{\gamma_{t}} \hat{\mathbf{V}}_{t-\frac{1}{2}}$$

$$\mathbf{X}_{t+1} = \mathbf{X}_{t} - \eta_{t} \hat{\mathbf{V}}_{t+\frac{1}{2}}$$
With $\gamma_{t} \ge \eta_{t}$

• This makes the noise an order smaller than the negative shift in the analysis

Scale Separation as a Remedy

• Draw
$$\mathcal{L}_1(\mathbf{x}) = 3\theta\phi$$
 or $\mathcal{L}_2(\mathbf{x}) = -\theta\phi$ with equal probability so

$$\ell^{1} = -\ell^{2} = (\mathcal{L}_{1} + \mathcal{L}_{2})/2$$
• OG+ $[\mathbf{x}_{t} = \mathbf{X}_{t+\frac{1}{2}}]$

$$\mathbf{X}_{t+\frac{1}{2}} = \mathbf{X}_{t} - \underline{\gamma_{t}} \hat{\mathbf{V}}_{t-\frac{1}{2}}$$

$$\mathbf{X}_{t+1} = \mathbf{X}_{t} - \eta_{t} \hat{\mathbf{V}}_{t+\frac{1}{2}}$$
With $\gamma_{t} \ge \eta_{t}$

• This makes the noise an order smaller than the negative shift in the analysis

• OptDA+
$$[\gamma_t^i \ge \eta_t^i]$$

 $X_{t+\frac{1}{2}}^i = X_t^i - \gamma_t^i g_{t-1}^i X_{t+1}^i = X_1^i - \eta_{t+1}^i \sum_{s=1}^t g_s^i$
• AdaOptDA+ uses learning rate
 $\gamma_t^i = \frac{1}{(1 + \sum_{s=1}^{t-2} ||g_s^i||^2)^{\frac{1}{4}}}$
 $\eta_t^i = \frac{1}{\sqrt{1 + \sum_{s=1}^{t-2} (||g_s^i||^2 + ||X_s^i - X_{s+1}^i||^2)}}$
 $\eta_t^i = \frac{1}{\sqrt{1 + \sum_{s=1}^{t-2} (||g_s^i||^2 + ||X_s^i - X_{s+1}^i||^2)}}$

• OptDA+
$$[\gamma_t^i \ge \eta_t^i]$$

 $X_{t+\frac{1}{2}}^i = X_t^i - \gamma_t^i g_{t-1}^i X_{t+1}^i = X_1^i - \eta_{t+1}^i \sum_{s=1}^t g_s^i$
• AdaOptDA+ uses learning rate
 $\gamma_t^i = \frac{1}{(1 + \sum_{s=1}^{t-2} ||g_s^i||^2)^{\frac{1}{4}}}$
 $\eta_t^i = \frac{1}{\sqrt{1 + \sum_{s=1}^{t-2} (||g_s^i||^2 + ||X_s^i - X_{s+1}^i||^2)}}$

• OptDA+
$$[\gamma_t^i \ge \eta_t^i]$$

 $X_{t+\frac{1}{2}}^i = X_t^i - \gamma_t^i g_{t-1}^i X_{t+1}^i = X_1^i - \eta_{t+1}^i \sum_{s=1}^t g_s^i$
• AdaOptDA+/v2 uses learning rate
 $\gamma_t^i = \frac{1}{(1 + \sum_{s=1}^{t-1} ||g_s^i - g_{s-1}^i||^2)^{\frac{1}{4}}}$
 $\eta_t^i = \frac{1}{\sqrt{1 + \sum_{s=1}^{t-1} ||g_s^i - g_{s-1}^i||^2}}$
 $\eta_t^i = \frac{1}{\sqrt{1 + \sum_{s=1}^{t-1} ||g_s^i - g_{s-1}^i||^2}}$

• OptDA+
$$[\gamma_t^i \ge \eta_t^i]$$

 $X_{t+\frac{1}{2}}^i = X_t^i - \frac{\gamma_t^i}{\gamma_t^i} g_{t-1}^i X_{t+1}^i = X_1^i - \eta_{t+1}^i \sum_{s=1}^t g_s^i$
• AdaOptDA+/v2 uses learning rate
 $\gamma_t^i = \frac{1}{(1 + \sum_{s=1}^{t-1} \|g_s^i - g_{s-1}^i\|^2)^{\frac{1}{4}}}$
 $\eta_t^i = \frac{1}{\sqrt{1 + \sum_{s=1}^{t-1} \|g_s^i - g_{s-1}^i\|^2}}$
 $\eta_t^i = \frac{1}{\sqrt{1 + \sum_{s=1}^{t-1} \|g_s^i - g_{s-1}^i\|^2}}$

Convergence to Solution Under Multiplicative Noise

• $g_t^i = \nabla_i \ell^i(\mathbf{x}_t)(1+\xi_t^i)$ where ξ_t^i is unbiased and has finite variance

Convergence to Solution Under Multiplicative Noise

- $g_t^i = \nabla_i \ell^i(\mathbf{x}_t)(1+\xi_t^i)$ where ξ_t^i is unbiased and has finite variance
- E.g., $\hat{\mathbf{V}}_{t+\frac{1}{2}}$ is $(3\phi_{t+\frac{1}{2}}, -3\theta_{t+\frac{1}{2}})$ or $(-\phi_{t+\frac{1}{2}}, \theta_{t+\frac{1}{2}})$ with probability one half for each

Convergence to Solution Under Additive Noise

• $g_t^i = \nabla_i \ell^i(\mathbf{x}_t) + \xi_t^i$ where ξ_t^i is unbiased and has finite variance

Convergence to Solution Under Additive Noise

- $g_t^i = \nabla_i \ell^i(\mathbf{x}_t) + \xi_t^i$ where ξ_t^i is unbiased and has finite variance
- $\hat{\mathbf{V}}_{t+\frac{1}{2}} = (\phi_{t+\frac{1}{2}} + \xi_t^1, -\theta_{t+\frac{1}{2}} + \xi_t^2)$ where $\xi_t^1, \xi_t^2 \sim \mathcal{N}(0, 1)$

Theoretical Guarantees Under Uncertainty (in Expectation)

		Adversarial	Same algorithm + Lipschitz operator + M $$			
		Bounded feedback Reg_t/t	Reg_t/t	- Cvg?	Strongly M $\operatorname{dist}(\mathbf{x}_t, \mathcal{X}_\star)$	Error bound $\operatorname{dist}(\mathbf{x}_t, \mathcal{X}_\star)$
AdaOptDA	Det.	$1/\sqrt{t}$	1/t	1	-	-
OG+	Mul. Add.	$1/\sqrt{t}$	$\frac{1/t}{1/\sqrt{t}}$	\$ \$	$\frac{e^{-\rho t}}{1/\sqrt{t}}$	$e^{- ho t} 1/t^{1/6}$
AdaOptDA+	Mul. Add.	$1/t^{1/4}$	$\frac{1/t}{1/\sqrt{t}}$	✓ -	-	-

Theoretical Guarantees Under Uncertainty (in Expectation)

		Adversarial	Same algorithm + Lipschitz operator + M $$			
		Bounded feedback Reg_t/t	Reg_t/t	- Cvg?	Strongly M $\operatorname{dist}(\mathbf{x}_t, \mathcal{X}_\star)$	Error bound $\operatorname{dist}(\mathbf{x}_t, \mathcal{X}_\star)$
AdaOptDA	Det.	$1/\sqrt{t}$	1/t	1	-	-
OG+	Mul. Add.	$1/\sqrt{t}$	$\frac{1/t}{1/\sqrt{t}}$	\$ \$	$e^{-\rho t} \\ 1/\sqrt{t}$	$e^{- ho t} 1/t^{1/6}$
AdaOptDA+	Mul. Add.	$1/t^{1/4}$	$\frac{1/t}{1/\sqrt{t}}$	✓ -	-	-

Theoretical Guarantees Under Uncertainty (in Expectation)

		Adversarial	Same algorithm + Lipschitz operator + M $$			
		Bounded feedback Reg_t/t	Reg_t/t	- Cvg?	Strongly M $\operatorname{dist}(\mathbf{x}_t, \mathcal{X}_\star)$	Error bound $\operatorname{dist}(\mathbf{x}_t, \mathcal{X}_\star)$
AdaOptDA	Det.	$1/\sqrt{t}$	1/t	1	-	-
OG+	<mark>Mul</mark> . Add.	$1/\sqrt{t}$	$\frac{1/t}{1/\sqrt{t}}$	\$ \$	$e^{- ho t}$ $1/\sqrt{t}$	$e^{- ho t} 1/t^{1/6}$
AdaOptDA+	Mul. Add.	$1/t^{1/4}$	$\frac{1/t}{1/\sqrt{t}}$	✓ -	-	-

Conclusion and Perspectives

- Iterative learning in a multi-agent environment
- Game theoretic model, algorithms with recency bias
- · Automatic learning rate tuning, learning under uncertainty

Conclusion and Perspectives

- Iterative learning in a multi-agent environment
- · Game theoretic model, algorithms with recency bias
- · Automatic learning rate tuning, learning under uncertainty
- Perspectives:
 - Technical challenges (e.g., relaxed assumptions, convergence rates)
 - What about other algorithms?
 - Beyond no-regret and convergence

Conclusion and Perspectives

- Iterative learning in a multi-agent environment
- Game theoretic model, algorithms with recency bias
- Automatic learning rate tuning, learning under uncertainty
- Perspectives:
 - Technical challenges (e.g., relaxed assumptions, convergence rates)
 - What about other algorithms?
 - Beyond no-regret and convergence

Thank you for your attention