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Push–Pull with Device Sampling
Yu-Guan Hsieh, Yassine Laguel, Franck Iutzeler, Jérôme Malick .

Abstract—We consider decentralized optimization problems
in which a number of agents collaborate to minimize the
average of their local functions by exchanging over an underlying
communication graph. Specifically, we place ourselves in an
asynchronous model where only a random portion of nodes
perform computation at each iteration, while the information
exchange can be conducted between all the nodes and in an
asymmetric fashion. For this setting, we propose an algorithm
that combines gradient tracking and variance reduction over the
entire network. This enables each node to track the average of
the gradients of the objective functions. Our theoretical analysis
shows that the algorithm converges linearly, when the local
objective functions are strongly convex, under mild connectivity
conditions on the expected mixing matrices. In particular, our re-
sult does not require the mixing matrices to be doubly stochastic.
In the experiments, we investigate a broadcast mechanism that
transmits information from computing nodes to their neighbors,
and confirm the linear convergence of our method on both
synthetic and real-world datasets.

Index Terms—decentralized optimization, convex optimization,
random gossip, device sampling

I. INTRODUCTION

IN this paper, we focus on solving the optimization problem

min
x∈Rd

f(x) :=
1

M

M∑
i=1

fi(x) (P)

where each function fi : Rd → R is available only locally at
the i-th node of a graph. Hence, in order to reach a consensus
on the minimum of (P), the M nodes have to communicate
using the graph’s edges.

Such decentralized optimization problems have been widely
studied in the literature at least since the pioneering works of
Bertsekas and Tsitsiklis [1], [2]. In terms of applications, de-
centralized optimization methods are popular for regression or
classification problems when the communication possibilities
between the nodes are scarce and cannot be handled by a
central entity (e.g., for wireless sensor networks, IoT-enabled
edge devices, etc.); see the recent surveys [3], [4], [5], [6]. In
these applications, the workload and communications between
the nodes are of primary importance.

The computation at the node level mainly depends on which
optimization method serves as a basis. If the nodes are able
to solve optimization sub-problems, the Alternating Direction
Method of Multipliers (ADMM) and other dual methods can
be extended to distributed setting [7], [8]. At the other end of
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the spectrum, stochastic gradients methods are very popular
since they require minimal computation at each node [9].
Gradient-based methods offer a good comprise between these
two extremes and currently know a rebirth, especially for
machine learning applications; see e.g., the recent [10].

In terms of exchanges, all communications between nodes
have to go through the edges of the graph. If the graph is undi-
rected (i.e., the edges are all bidirectional), the nodes can gos-
sip to average their values. Mathematically, this corresponds to
multiplying the agents’ states by a doubly-stochastic matrix;
see [6, Sec. II] for details. However, if the graph is directed,
such direct gossiping is no longer possible since maintaining
both a consensus among the nodes and the average of their
values is not possible at the same time [11]. To overcome
this problem, two main type of methods have been developed.
First, Push–Sum methods (or ratio consensus) consist in ex-
changing an additional “weighting”; these methods can reach
an average consensus for the ratio of the two values [12], [13],
[14]. However, the analysis of Push–Sum gradient methods is
often quite involved and the algorithm can become numerically
unstable due to division by very small values, see e.g., the
simulations of [15] as well as references therein. Second,
Push–Pull methods rely on two communications steps with
different mixings to maintain convergence, offering strong
theoretical guarantees as well as good practical performance
[16], [15].

Finally, a desirable feature in decentralized methods is the
possibility to allow the nodes to randomly awaken, compute,
and send/receive information; which is generally called ran-
domized gossiping [17] or asynchronous decentralized meth-
ods [5], [18]. In terms of analysis, this consists in replacing the
fixed communication matrices with random ones having the
support corresponding to the active links; this was actively
studied for decentralized gradient methods, including Push–
Pull gradient [15].

A. Contributions and outline

In this paper, we focus on gradient-based methods for
decentralized asynchronous optimization on directed graphs.
We propose and analyze an asynchronous Push–Pull gradient
algorithm where only a fraction of the nodes are actively
computing a local gradient at each iteration. This feature is
inspired from the device sampling (or client selection) proce-
dure in federated learning [19], [20]. This popular mechanism
enables to take into account the fact that all the nodes may
not be available at all time and furthermore that querying all
gradients at each iteration may be a waste of computational
power if the nodes’ values only change by a little amount.

In terms of algorithm, device sampling calls for a variance
reduction mechanism in order to mitigate the noise induced
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by the sampling of the nodes. To achieve this, we introduce a
SAGA-like [21] update at the network level; see Example 4.
This additional step thus calls for an original analysis.

The remainder of the paper is structured as follows. The
introduction is completed by an overview on related lit-
erature. In Section II, we present our general algorithmic
template (Push–Pull with Device Sampling), together with
some specific cases of interest, connecting our method with
existing methods. In Section III, we provide linear convergence
results under classical convexity/smoothness assumptions on
the objective functions and weak assumptions on communica-
tions. Section IV and Section V are dedicated to the detailed
convergence analysis and illustrative numerical simulations.
Finally, proofs of a couple of technical intermediate results
are given in Appendix.

B. Related works

Direct extensions of the gradient method to the decen-
tralized setting rely on decreasing stepsizes to converge and
are thus limited to sublinear convergence rates, even if the
minimized functions are smooth and strongly convex. To
overcome this situation, the gradient tracking technique was
introduced; it consists in dynamically tracking the average
value of the gradient and using this value instead of the local
gradient. This technique enables the use of a fixed stepsize
and exhibits much better rates in theory and in practice [22],
[23], [24], [25]; see also the recent [26]. Gradient tracking
can be intuitively seen as a variance reduction at the network
level. The method presented in this paper extends this idea
of variance reduction to device sampling. Note also that in
the case where the nodes’ functions are themselves a finite
sum, this sum can be sampled, and variance reduction can be
additionally applied at the node level [27], [28], however this
specific form is out of the scope of the present paper.

AB/Push–Pull gradient methods naturally involve gradient
tracking; see e.g., [15, Rem. 1] and more generally [29], [30],
[31], [15]. These algorithms share common ingredients and
mainly differ in their communications models. The works that
are the most closely related to the asynchronous directed setup
considered in this paper are [15] and [30]. These two papers
study an asynchronous version of AB/Push–Pull which share
similarities, in the update and the communication scheme,
with our proposed method (more precisely, with the special
setup of Example 3). However, in contrast to our method,
these methods require every node that is involved in the
communication step to perform a local update. Moreover,
the analysis of [15] only works for the more restrictive case
where the non-diagonal coefficients of the mixing matrices
are sufficiently small. Note finally that [30] does not consider
a random network model, but instead performs an analysis
in terms of the worst-case dependence on the delays. This
analysis is thus complementary to our work.

C. Basic notation and definitions

Throughout the paper, we use bold lowercase letters to
denote vectors and capital letters to denote matrices. Ik and
1k respectively represent the identity matrix of size k×k and

the k−dimensional vector containing all ones. The subscript
is omitted when the dimension is clear from the context. We
also define J = 1M1>M/M as the projection matrix onto the
consensus space, and denote by ρ(P ) the spectral radius of a
matrix P .

The interaction topology between the nodes is modeled by
a directed graph G = (V, E), where V is the set of vertices
(nodes) and E ∈ V × V is the set of edges, such that node i
can send information to j only if (i, j) ∈ E . The out-neighbors
and in-neighbors of a node i are respectively defined by

N out
i = {j ∈ V : (i, j) ∈ E}, N in

i = {j ∈ V : (j, i) ∈ E}.

When the graph is undirected, the two sets coincide and we
simply write Ni. We say that the matrix W = (wij) ∈ RM×M
is compatible with the underlying communication topology if
wij = 0 whenever (j, i) /∈ E .

Finally we introduce the aggregate objective function,
F (X) =

∑M
i=1 fi(xi), as a function of the variable X =

[x1, . . . ,xM ]>∈ RM×d. When F is differentiable, we have

∇F (X) = [∇ f1(x1), . . . ,∇ fM (xM )]>.

II. ALGORITHMS: EXISTING, NEW, AND EXAMPLES

In this section, we present our asynchronous Push-Pull
gradient algorithm with device sampling. Prior to that, we
recall the existing AB/Push–Pull method [29], [15] which
inspires our algorithm. After detailing our general template,
we instantiate it in several situations of interest, revealing its
versatility.

A. The AB/Push–Pull method

If all the nodes are active at each iteration, the commu-
nication setup reduces to that of synchronous decentralized
optimization. In this situation and assuming that the functions
fi are differentiable, the AB/Push–Pull algorithm [29], [15]
is described as follows. In addition to the decision variables
xti that should minimize f , a variable yti is introduced to
track the gradient of f . Then, provided η > 0 a constant
stepsize and two mixing matrices A = (aij) ∈ RM×M and
B = (bij) ∈ RM×M , the update of the algorithm at iteration t
writes

xt+1
i =

∑
j∈V

aijx
t
j − η yti ,

yt+1
i =

∑
j∈V

bijy
t
j +∇ fi(xt+1

i )−∇ fi(xti).

It is required that A and B have non-negative weights and be
respectively row-stochastic (A1 = 1) and column-stochastic
(1>B = 1>). With the notation Yt = [yt1, . . . ,y

t
M ]>, the

update can also be written, in a matrix form, as

Xt+1 = AtXt − ηYt,
Yt+1 = BtYt +∇F (Xt+1)−∇F (Xt).

(PP)

Intuitively, the use of row-stochastic matrices drive xti
to consensus, while the use of column-stochastic matrices
preserves the total mass, i.e., 1>Bω = 1>ω for any ω ∈ RM .
Moreover, if the difference ∇ fi(xt+1

i ) − ∇ fi(xti) tends to
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zero, yti converges to a multiple of
∑M
i=1∇ fi(xti). In fact,

from the Perron-Frobenius theorem, we know that if B is
primitive1 then limt→+∞Bt = πB1

> where πB is the right
eigenvector of B associated with the eigenvalue 1 such that
1>πB = 1. Therefore, asymptotically every xti descends in
the direction opposite to the gradient of f . Mathematically,
it can be proven that under standard convexity assumptions
AB/Push–Pull converges linearly with sufficiently small con-
stant step-size η [33, Th. 1].

B. Proposed Push–Pull with Device Sampling

Our algorithm can be viewed as a generalization of
AB/Push–Pull to handle the device sampling mechanism. First,
in order to allow for asynchronicity, let (At)t∈N and (Bt)t∈N
be two sequences of mixing matrices that are compatible
with the underlying communication topology. Now, to handle
device sampling, we denote by Vt the set of nodes that are
active at time t. This means that node i computes a local
gradient at round t if and only if i ∈ Vt.

With the notations At = (atij), Bt = (btij), and Dt =
diag(1i∈Vt), i.e., Dt is the diagonal matrix in RM×M whose
i-th diagonal element is 1 if i ∈ Vt and 0 otherwise, each
iteration of our proposed Push–Pull with Device Sampling
(PPDS) can be stated in the compact form

Yt+ 1
2

= Yt +Dt(∇F (Xt)−∇F (Zt)),

Xt+ 1
2

= Xt − ηDtYt+ 1
2
,

Zt+1 = DtXt + (I −Dt)Zt,

Yt+1 = BtYt+ 1
2
, Xt+1 = AtXt+ 1

2
.

(PPDS)

Several remarks are in order. First, we introduce auxiliary
local variable zti for each node and write Zt = [zt1, . . . , z

t
M ]>.

The presence of these variables indicate the nodes store
their last computed gradient. This is necessary because xti
can be modified by network communication between two
successive activations of node i. In fact, while only the active
nodes perform local updates at each iteration, the inactive
nodes can be involved in the communication process. This
flexibility allows us to take into account a wider class of
algorithms, as illustrated in the forthcoming examples. Finally,
as in AB/Push–Pull, we only require the matrices (At)t∈N
and (Bt)t∈N to be respectively row- and column-stochastic.
This means that we allow for one-way communication and
in particular inactive nodes may passively receive information
without sending back their local states.

In terms of implementation, our method (PPDS) gives
Algorithm 1 for asynchronous optimization on directed graphs.
In the next section, we discuss special cases and show that we
recover existing algorithms.

C. Special cases

1) AB/Push–Pull: We first demonstrate that the original
AB/Push-Pull algorithm [29], [15] indeed falls within the
PPDS framework. For this, we fix At ≡ A, Bt ≡ B, and

1A square non-negative matrix W is called primitive if there exists a power
k ≥ 1 such that Wk > 0; see [32, Th. 8.5.2]

Algorithm 1 PPDS (at each node i)
1: Initialize: y1

i = ∇ fi(x1
i ); z1i = x1

i

2: for t = 1, 2, . . . do
3: Local update

4: if i ∈ Vt then
5: y

t+ 1
2

i ← yti +∇ fi(xti)−∇ fi(zti)
6: x

t+ 1
2

i ← xti − ηy
t+ 1

2
i

7: Set zt+1
i ← xti and store ∇ fi(zt+1

i )
8: else
9: y

t+ 1
2

i ← yti ; x
t+ 1

2
i ← xti; zt+1

i ← zti
10: end if
11: Communication

12: xt+1
i =

∑
j∈V a

t
ijx

t+ 1
2

j . At is row-stochastic

13: yt+1
i =

∑
j∈V b

t
ijy

t+ 1
2

j . Bt is column-stochastic
14: end for

Vt = V . Then, after rearranging, the (PPDS) update can be
written as

Xt+1 = A(Xt − ηYt+ 1
2
),

Yt+ 3
2

= BYt+ 1
2

+∇F (Xt+1)−∇F (Xt).

This is exactly the adapt-then-combine variant of AB/Push–
Pull as presented in [15].

2) Communication between active nodes: We can imag-
ine a situation where only active agents participate in the
communication. Then, these active agents may communicate
with each other using mixing matrices A(Vt), B(Vt) that are
compatible with the induced subgraph G[Vt], defined by the
vertex set Vt and the edges of E that connect two vertices of
Vt. For example, if the graph is symmetric and A(Vt) = B(Vt)
is the Metropolis matrix of G[Vt], we have At = Bt and

atij =


1

max(degt(i),degt(j))
if i 6= j and {i, j} ∈ E ∩ 2Vt ,

1−
∑M
k=1 a

t
ik if i = j,

0 otherwise,

where degt(i) = card(Ni ∩Vt) is the degree of i ∈ Vt in the
induced graph G[Vt].

3) Broadcast-type update: As mentioned previously, our al-
gorithm allows inactive nodes to passively receive information
from active nodes. Therefore, the active nodes can simply
broadcast their local variables to their neighbors, no matter
whether these neighbors are active or not. To ensure the row-
stochasticity of At, the received xti’s are averaged out. On the
other hand, to guarantee the column-stochasticity of Bt, an
active node divides its yti by the number of nodes it sends the
information to, as usually done in a push-sum scheme.

For concreteness, let us denote by N out
j,t the set of neighbors

that active worker j ∈ Vt transmit information to (including
itself) in round t and by N in

i,t = {j ∈ Vt : i ∈ N out
j,t } the

set of active workers that send information to i in this same
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round. The mixing matrices At and Bt are then defined by

atij =

{
1

card(N in
i,t ∪{i})

if j ∈ N in
i,t ∪{i},

0 otherwise;

btij =


1

card(Nout
j,t )

if j ∈ N in
i,t ,

1 if j = i and j /∈ Vt,
0 otherwise.

In this example, we see that our method offers an additional
degree of freedom compared to G-Push–Pull [15] since in that
algorithm atij > 0 only if i, j ∈ Vt; this is not necessarily the
case in our approach.

4) SAGA: SAGA [21] is a well-known (centralized) vari-
ance reduction methods that replaces the stochastic gradient
∇ fi(xt) with an unbiased gradient estimator with diminishing
variance. For this, we store a table of gradients (∇ fi(zti))Mi=1,
where, similar to PPDS, zti is the iterate at which ∇ fi was last
evaluated. Let it be sampled from the index set {1, . . . ,M}.
The update of SAGA is then given by:

gt = ∇ fit(xt)−∇ fit(zt) +
1

M

M∑
i=1

∇ fi(zt), (1)

xt+1 = xt − ηgt.

To recover SAGA from PPDS, we set At = Bt ≡ J . This
ensures yti = (1/M)

∑M
i=1∇ fi(zt) and thus y

t+ 1
2

i is exactly
updated as in (1) when i is active. Specifically, if exactly one
node is sampled at each iteration, (PPDS) with step-size η
and At = Bt ≡ J is equivalent to SAGA with stepsize η/M .
If multiple workers are active at a same time slot, we get a
mini-batch version of SAGA.

III. LINEAR CONVERGENCE OF PPDS

In this section, we present convergence guarantees of
PPDS for strongly convex functions over a random network
model. Concretely, we make the following standard convex-
ity/smoothness assumption on the objective functions:

Assumption 1. All the individual fi’s are L-smooth and
convex; the global function f is µ-strongly convex.

Thanks to the strong convexity of f , we know there exists a
unique solution of (P) which we will denote by x?. Moreover,
we model (Vt)t∈N, (At)t∈N, and (Bt)t∈N as random variables
satisfying that:

Assumption 2. The random variables ((Vt, At, Bt))t∈N are
temporally independent and identically distributed (i.i.d.).

Assumption 2 is actually only needed to provide the con-
tractions of Lemmas 3 and 6. Hence, it could be weakened
accordingly. We chose to keep it as such for ease of reading
and for consistency with the literature.

A. The general case

First, we present our linear convergence result under rather
weak assumptions on communications (essentially that the
information can flow all over the network) and device sampling
(each node is sampled with positive probability).

Assumption 3. The mixing matrices (At)t∈N and (Bt)t∈N
have the following properties:

a) For all t ∈ N, At is row-stochastic and Bt is column-
stochastic.

b) Both A := E[A1] and B := E[B1] are primitive.
c) There exists ν > 0 such that atii ≥ ν and btii ≥ ν for all
i ∈ V, t ∈ N.

Assumption 4. Every node is sampled with positive proba-
bility, i.e., pi := P(i ∈ V1) > 0 for all i ∈ V .

It is straightforward to verify that Assumptions 2–4 are
fulfilled in all the aforementioned examples. In particular, in
Example 3, the primitivity of matrices A and B are ensured
by the strong connectivity of the underlying graph G since
Aij > 0 if and only if (j, i) ∈ E if and only if Bij > 0.
On the other hand, Assumption 3c posits that at each iteration
each nodes maintains a fraction of its previous states. This
rules out the counterexamples in which the states of the active
nodes are always overwritten by those of the inactive states.
Under these fairly weak assumptions, we manage to prove the
convergence of PPDS as stated in the following theorem.

Theorem 1. Let Assumptions 1–4 hold. If (PPDS) is run with
a sufficiently small step-size η > 0, then

a) xti converges almost surely to the solution x?.
b) The expected squared distance between the iterate and

the solution E[‖xti − x?‖2] vanishes geometrically.

Theorem 1 shows that the nice properties of gradient
tracking and variance reduced methods are also preserved by
our algorithm: it converges with constant step-size and enjoys
a linear convergence rate as centralized gradient descent.
Therefore, our method effectively reduces the variances of the
noises induced by both sampling and communication.

We note that the assumptions for this result are quite similar
to the ones for G-Push–Pull in [15], except that i) we do
not put additional restrictions on the coefficients of the gossip
matrix (unlike Eq. (24a) in [15]); and ii) we allow for a device
sampling strategy that can be independent or correlated with
the gossiping step.

B. The case of doubly stochastic matrices.

Due to the generality of the result, Theorem 1 only describes
the qualitative behavior of the algorithm. To derive an explicit
convergence rate, we focus on the specific situation where the
mixing matrices are doubly stochastic and the active devices
are sampled uniformly at random. Formally, we make the
following assumptions.

Assumption 3′. For all t ∈ N, both At and Bt are doubly
stochastic. Moreover, we have the inequality

λ := max(ρ(E[A>1 (I − J)A1]), ρ(E[B>1 (I − J)B1])) < 1.

Assumption 4′. Vt is of fixed size S and is sampled uniformly
from all the subsets of this size.

As detailed later in Section IV-A, the bistochasticity of the
matrices and the condition λ < 1 allows us to derive a per-
step contraction of the variance of the nodes’ variables (see
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Lemma 3). Using uniform sampling further facilitates the anal-
ysis and makes the final expression much more concise. The
next theorem states the step-size condition and the convergence
rate of PPDS when these assumptions are fulfilled.

Theorem 2. Let Assumptions 1, 2, 3′ and 4′ hold. If (PPDS)
is run with step-size

η ≤ min
(

(1−λ)2
14L

√
M
S ,

(1−λ)2
2304L

(
M
S

) 3
2 , 1

576L

√
M
S

)
, (2)

then the expected squared distance E[‖xti − x?‖2] vanishes
geometrically in O(γt) with γ = max

(
1− ηµS

2M , 1− S
4M

)
.

In particular, it takes

O

((
L

µ

√
M

S

1

(1− λ)2
+
M

S

)
log

(
1

ε

))
(3)

iterations to achieve ε accuracy when η is suitably tuned.

Theorem 2 indicates that a larger step-size can (and should)
be taken for smaller sample size, if all the other parameters
are fixed. Intuitively, this is because at each iteration fewer
gradients enter the network, and thus these gradients can be
used with a larger weight.

Although the complexity in terms of iterations is degraded
by

√
M/S compared to asynchronous Push–Pull without

device sampling (i.e., S = M ), the complexity in number
of computed gradients is actually improved. To see this, we
multiply (3) by S and and verify that the resulting quantity
indeed decreases when S gets smaller.

Nonetheless, device sampling may also affect the connec-
tivity of the network and thus λ if the communication matrices
are chosen according to the sampled devices Vt (for instance,
in Example 3). Therefore, unlike in the centralized case,
sampling with variance reduction is not always guaranteed
to converge faster here. Rather, there is a communication-
computation trade-off in which the sampling size S plays a
critical role.

IV. CONVERGENCE ANALYSIS

In this section we outline the proofs of Theorems 1 and 2.
To begin, let us define

gti = yti +∇ fi(xti)−∇ fi(zti).

as the gradient estimator of node i at iteration t so that yt+
1
2

i =

gti if and only if i ∈ Vt, and y
t+ 1

2
i = yti otherwise. With the

mass preservation property of column-stochastic matrices and
the definition of zti, we have immediately the following lemma.

Lemma 1. Suppose that the matrices (Bt)t∈N are column-
stochastic. It holds that

M∑
i=1

yti =

M∑
i=1

∇ fi(zti),
M∑
i=1

gti =

M∑
i=1

∇ fi(xti).

Therefore, if the iterates move in the direction −
∑M
i=1 g

t
i,

we can expect convergence of the algorithm. This idea is
crucial for our proof.

Another important step in the analysis is to establish that the
nodes’ decisions variables converge to a consensus. For this,

let us write x̄t = 1>Xt/M for the average of these variables.
Similarly, we also use the notation ȳt = 1>Yt/M .

Finally, we would like to highlight that the expectation E is
taken over the randomness induced by both sampling and com-
munication. We define (Ft)t∈N as the natural filtration asso-
ciated to the sequence (Xt)t∈N so that ((Vs, As, Bs))1≤s≤t−1
is Ft measurable while (Vt, At, Bt) is not. For simplicity, we
write Et for the expectation conditioned on the history up to
time t, i.e., Et[·] = E[· | Ft] = E[· | ((Vs, As, Bs))1≤s≤t−1].

A. Analysis with doubly stochastic matrices

As a warm-up, we first establish the convergence of the
algorithm in the simpler case where both Assumption 3′ and
Assumption 4′ hold. This allows us to highlight our proof
strategy without having to deal with the additional difficulties
caused by the fact of having asymmetric communications.
Following previous works that analyze gradient tracking and
variance reduced methods, the essential idea of our proof is
to derive a system of inequalities for the following quantities

dt = E[‖x̄t − x?‖2], et = E[f(x̄t)− f(x?)],

ρt = E[‖Xt − 1x̄>t ‖2], ζt = E[‖Yt − 1ȳ>t ‖2],

ψt =

M∑
i=1

E[‖∇ fi(zti)−∇ fi(x?)‖2].

(4)

Here, dt and et measure the performance of the averaged
iterate; ρt and ζt measure the variances of the two variables of
the agents; and ψt measures the quality of the control variates
and is standard in the analysis of variance reduced algorithms
[34], [35]. The following proposition bounds these quantities
by a linear combination of their previous values.

Proposition 1. Let rt = [dt, ρt, ζt, ψt]
>. Under Assump-

tions 1, 2, 3′ and 4′, we have

rt+1 ≤ Qrt + eth (5)

where the entries of Q and h are given by

Q =



1− ηµS
2M

ηLS
M2 + 10η2L2S2

M3
2η2S2

M3
4η2S2

M3

0 1+λ
2 + 20η2L2S

M(1−λ)
4η2S

M(1−λ)
8η2S

M(1−λ)

0 8L2S
M(1−λ)

1+λ
2

4S
M(1−λ)

0 2L2S
M 0 1− S

M


,

h =

[
−ηS
M

+
20η2LS2

M2
,

40η2LS

1− λ
,

16LS

1− λ
, 4LS

]>
.

To prove Proposition 1, we start by presenting a series of
technical lemmas that are useful for this purpose. First, in
order to deal with device sampling, we observe that Gt =
[gt1, . . . , g

t
M ]> plays an important role since DtYt+ 1

2
= DtGt.

With the uniform sampling of Assumption 4′, we obtain the
following lemma.
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Lemma 2. Let Assumptions 2 and 4′ hold. Then

a) Et[1
>DtYt+ 1

2
] =

S

M

M∑
i=1

gti.

b) Et[‖1>DtYt+ 1
2
‖2] ≤ S2

M

M∑
i=1

‖gti‖2.

Proof. a) Note that 1>DtYt+ 1
2

=
∑
i∈Vt y

t
i =

∑
i∈Vt g

t
i.

Therefore,

Et[1
>DtYt+ 1

2
] = Et

[∑
i∈Vt

gti

]
= Et

[
M∑
i=1

1i∈Vt g
t
i

]

=

M∑
i=1

gti Et[1i∈Vt ] =
S

M

M∑
i=1

gti.

We can put gti outside the expectation since it is Ft-
measurable.

b) Similarly, we have

Et[‖1>DtYt+ 1
2
‖2] = Et

∥∥∥∥∥∑
i∈Vt

gti

∥∥∥∥∥
2
 ≤ Et

[
S
∑
i∈Vt

‖gti‖2
]

= S

M∑
i=1

Et[1i∈Vt‖gti‖2] =
S2

M

M∑
i=1

‖gti‖2.

To control the distance to consensus, we use the lemma be-
low that shows a contraction property of the mixing matrices.

Lemma 3. Let Assumptions 2 and 3′ hold. Then

a) Et[‖AtXt − 1x̄>t ‖2] ≤ λ‖Xt − 1x̄>t ‖2.
b) Et[‖BtYt − 1ȳ>t ‖2] ≤ λ‖Yt − 1ȳ>t ‖2.

Proof. Since At is doubly stochastic, we can write

Et[‖AtXt − 1x̄>t ‖2]

= Et[‖(I − J)At(Xt − 1x̄>t )‖2]

= Et[tr[(Xt − 1x̄>t )>A>t (I − J)2At(Xt − 1x̄>t )]]

= tr[(Xt − 1x̄>t )> Et[A
>
t (I − J)At](Xt − 1x̄>t )]

≤ ρ(Et[A
>
t (I − J)At])‖Xt − 1x̄>t ‖2.

Under Assumption 2 we have Et[A
>
t (I − J)At] = E[A>1 (I −

J)A1] and a) follows immediately given that ρ(E[A>1 (I −
J)A1]) ≤ λ. Property b) is proved in the same way.

Finally, we can use the smoothness of the objective func-
tions and the optimality conditions to bound the expected
squared norm of Gt and gradients differences by the quantities
introduced in (4).

Lemma 4. Let Assumption 1 hold and (Bt)t∈N be column-
stochastic. We have

a) E[‖∇F (Xt)−∇F (1>x?)‖2] ≤ 2L2ρt + 4MLet.

b) E[‖∇F (Xt)−∇F (Zt)‖2] ≤ 4L2ρt + 8MLet + 2ψt.

c) E[‖Gt‖2] ≤ 10L2ρt + 20MLet + 4ψt + 2ζt.

Proof. See Appendix A.

We are now ready to prove Proposition 1 by leveraging the
above lemmas.

Proof of Proposition 1. Below we bound the four quantities
in question respectively.

Bounding dt+1. We develop

‖x̄t+1 − x?‖2 = ‖x̄t −
η

M
1>DtYt+ 1

2
− x?‖2

= ‖x̄t − x?‖2 −
2η

M
〈x̄t − x?,1

>DtYt+ 1
2
〉

+
η2

M2
‖1>DtYt+ 1

2
‖2. (6)

Using Lemmas 1 and 2 and Assumption 1, we get

Et[〈x̄t − x?,1
>DtYt+ 1

2
〉]

= 〈x̄t − x?,
S

M

M∑
i=1

∇ fi(xt
i)〉

=
S

M

M∑
i=1

(〈x̄t − xt
i,∇ fi(xt

i)〉+ 〈xt
i − x?,∇ fi(xt

i)〉)

≥ S

M

M∑
i=1

(fi(x̄t)− fi(xt
i)−

L

2
‖xt

i − x̄t‖2 + fi(x
t
i)− fi(x?))

= S(f(x̄t)− f(x?))− LS

2M
‖Xt − 1x̄>

t ‖2

≥ S

2
(f(x̄t)− f(x?)) +

µS

4
‖x̄t − x?‖2 −

LS

2M
‖Xt − 1x̄>

t ‖2.
(7)

In the last line we have used the fact that f(x) − f(x?) ≥
(µ/2)‖x−x?‖2 for every x ∈ Rd since f is strongly convex.
As for the last term of (6), we resort to Lemma 2b and
Lemma 4c. This gives

E[‖1>DtYt+ 1
2
‖2] ≤ S2

M
(10L2ρt + 20MLet + 4ψt + 2ζt).

Combining the above inequalities we get

dt+1 ≤
(

1− ηµS

2M

)
dt +

(
ηLS

M2
+

10η2L2S2

M3

)
ρt

+
2η2S2

M3
ζt +

4η2S2

M3
ψt −

(
ηS

M
− 20η2LS2

M2

)
et.

Bounding ρt+1. In the inequality ‖a+b‖2 ≤ (1+δ)‖a‖2 +
(1 + 1/δ)‖b‖2, choosing δ = (1− λ)/2λ gives2

‖a+ b‖2 ≤ 1 + λ

2λ
‖a‖2 +

1 + λ

1− λ
‖b‖2. (8)

Since At is doubly stochastic and hence column-stochastic,
it holds JAt = J . We then have,

Et[‖Xt+1 − 1x̄>t+1‖2]

= Et[‖AtXt − ηAtDtYt+ 1
2
− (1x̄>t − ηJDtYt+ 1

2
)‖2]

≤ 1 + λ

2λ
Et[‖AtXt − 1x̄>t ‖2]

+
1 + λ

1− λ
η2 Et[‖AtDtYt+ 1

2
− JDtYt+ 1

2
‖2]. (9)

2Without loss of generality we assume λ > 0. Otherwise the first term in
the inequalities are always 0 and we can simply take δ = 1. The same remark
applies to the analysis in Section IV-B.
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Using Lemma 3a the first term can be bounded by (1 +
λ)‖Xt − 1x̄>t ‖2/2. The same does not apply to the second
term as At and Dt are not independent. Nonetheless, with the
bistochasticity of At, we can still write

Et[‖AtDtYt+ 1
2
− JDtYt+ 1

2
‖2] ≤ Et[‖DtYt+ 1

2
‖2]

=
S

M

M∑
i=1

‖gti‖2.

With Lemma 4c, taking total expectation in (9) then gives

ρt+1 ≤
1 + λ

2
ρt +

1 + λ

1− λ
η2S

M
(10L2ρt + 20MLet + 4ψt + 2ζt)

≤
(

1 + λ

2
+

20η2L2S

M(1− λ)

)
ρt +

4η2S

M(1− λ)
ζt

+
8η2S

M(1− λ)
ψt +

40η2LS

1− λ et.

Bounding ζt+1. Similar to the above, using (8) and the
bistochasticity of Bt, we obtain

‖Yt+1 − 1ȳ>
t+1‖2 = ‖BtYt −BtDt(∇F (Xt)−∇F (Zt))

− (1ȳ>
t − JDt(∇F (Xt)−∇F (Zt)))‖2

≤ 1 + λ

2λ
‖BtYt − 1ȳ>

t ‖2

+
1 + λ

1− λ‖Dt(∇F (Xt)−∇F (Zt))‖2. (10)

The uniform sampling assumption implies that

Et[‖Dt(∇F (Xt)−∇F (Zt))‖2]

= Et

[∑
i∈Vt

‖∇ fi(xti)−∇ fi(zti)‖2
]

=
S

M

M∑
i=1

‖∇ fi(xti)−∇ fi(zti)‖2.

Taking expectation in (10) and applying Lemma 3b and
Lemma 4b then yields

ζt+1 ≤
1 + λ

2
ζt +

1 + λ

1− λ
S

M
(4L2ρt + 8MLet + 2ψt)

≤ 1 + λ

2
ζt +

8L2S

M(1− λ)
ρt +

4S

M(1− λ)
ψt +

16LS

1− λ
et.

Bounding ψt+1. Note that by the update rule of zti, we have

Et[‖∇ fi(zt+1
i )−∇ fi(x?)‖2]

=

(
1− S

M

)
‖∇ fi(zti)−∇ fi(x?)‖2

+
S

M
‖∇ fi(xti)−∇ fi(x?)‖2.

Summing from i = 1 to M , applying Lemma 4a and taking
total expectation, we get

ψt+1 ≤
(

1− S

M

)
ψt +

S

M
(2L2ρt + 4MLet)

=

(
1− S

M

)
ψt +

2L2S

M
ρt + 4LSet.

Conclude. Putting all together we get exactly (5).

From the linear system of inequalities (5) there are multiple
ways to derive the linear convergence of the algorithm. To
obtain the explicit convergence rate and step-size condition
presented in Theorem 2, we construct a suitable Lyapunov
function which is a linear combination of dt, ρt, ζt, and
ψt with positive coefficients, and prove that this function
decreases geometrically at each iteration.

Proof of Theorem 2. Let us consider the vector

ω =
[
1

√
S(1−λ)
M

3
2

η(1−λ)
96ML

η
12ML

]>
,

and γ as defined in Theorem 2, it can be verified that
Proposition 1 implies

ω>rt+1 ≤ γ ω>rt (11)

whenever step-size condition (2) is satisfied. This means ω>rt
converges geometrically in O(γt). To conclude, we use the
inequality

E[‖xti −x?‖2] ≤ E[2‖xti − x̄t‖2 + 2‖x̄t−x?‖2] ≤ 2ρt + 2dt.

Detailed computations for proving (11) are provided in Ap-
pendix B.

B. Analysis for the general case

Under our weakest set of assumptions (Assumptions 3
and 4), the mixing matrices do not provide a contraction
towards a consensus at each iteration. Nevertheless, the prim-
itivity of the mixing matrices in expectation enables us to
show that after a certain number of gossip steps l (implicitly
defined), some sort of contraction happens for both matrices
sequences but with respect to a time-varying weighted average
instead of a uniform one.

This has direct consequences on our proof technique since
the linear system of equations developed previously has to
be modified and in particular extended to track l successive
iterations. With this augmentation, the proof techniques devel-
oped before do not hold anymore and we resort to analyzing
the spectral radius of the recurrence matrix by perturbation
theory arguments when the stepsize is small.

These two points significantly complicate the convergence
proof of the method and constitute the main technical contri-
butions of the paper.

1) Multi-step contraction: To establish the multi-step con-
traction brought by the mixing matrices, we first leverage the
primitivity assumption on A = E[A1] and B = E[B1] to
show that inequalities similar to the one in Assumption 3′

hold when we consider the product of successive matrices,
which we abbreviate as3

At:s = AtAt−1 . . . As, Bt:s = BtBt−1 . . . Bs.

The following lemma generalizes Assumption 3′ and is
useful for deriving inequalities in the form of Lemma 3.

3If t < s we use the notation At:s = Bt:s = I .
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Lemma 5. Let Assumptions 2 and 3 hold. Then, there exists
an integer l such that

ρ(E[A>1+l:1(I − J)A1+l:1]) < 1,

ρ(E[(I − J)>B>1+l:1B1+l:1(I − J)]) < 1.

Proof. We will write ‖W‖ and ‖W‖F respectively for the
spectral norm and the Frobenius norm of a matrix W .
Lemma 5 is an immediate result of [36, Prop. 2], which states
that E[‖(I−J)A1+l:1‖2F] converges to 0 at a geometric rate. We
can thus set l sufficiently large so that E[‖(I−J)A1+l:1‖2F] <
1, and the first inequality then follows from that

ρ(E[A>1+l:1(I − J)A1+l:1]) ≤ E[ρ(A>1+l:1(I − J)A1+l:1)]

= E[‖(I − J)A1+l:1‖2]

≤ E[‖(I − J)A1+l:1‖2F],

where we have used the convexity of the spectral radius
function ρ and the fact that the spectral norm of a matrix
is bounded from above by its Frobenius norm.

For the second inequality, we observe that the matrices
(B>t )t∈N have exactly the same assumptions as (At)t∈N.
Moreover,

ρ(E[(I − J)>B>1+l:1B1+l:1(I − J)])

≤ E[ρ((I − J)>B>1+l:1B1+l:1(I − J))]

= E[‖B1+l:1(I − J)‖2]

= E[‖(I − J)B>1 . . . B
>
1+l‖2].

Hence the same argument applies.

Another important challenge towards proving a result in
the spirit of Lemma 3 is that the matrices (At)t∈N (resp.
(Bt)t∈N) do not have a fixed left (resp. right) Perron vector,
and as a consequence there are not predetermined values that
the variables should converge to after the mixing matrices are
applied. To overcome this difficulty, we instead introduce two
sequence of random vectors (vt)t∈N and (ut)1≤t≤T . Here T
is a positive integer fixed in advance. Let πA be the left Perron
vector of A such that 1>πA = 1. These sequences are defined
recursively by

v1 =
1

M
1, vt+1 = Btvt; uT = πA, u>t+1At = ut.

The sequence (ut)1≤t≤T is defined in a time-reversed manner
and mimics the absolute probability sequence [37], [38] that
can be defined for (At)t∈N. However, the above construction
gives an explicit expression of ut which turns out to be useful
for our proof. Also notice that the value of ut is dependent
on the choice of T though this is implicit from the notation.

Since the (Bt)t∈N are column-stochastic and the (At)t∈N
are row-stochastic, one deduces immediately that both (vt)t∈N
and (ut)1≤t≤T are sequences of probability vectors. Moreover,
under Assumption 2 we have E[ut] = E[u>t+1]E[At] =
E[u>t+1]A. By induction we then get

E[ut] = πA, ∀t ∈ {1, . . . , T}. (12)

In the remainder of the section, we will take l ≥ 0 such
that the inequalities of Lemma 5 are satisfied and define

λ = max(ρ(E[A>1+l:1(I − J)A1+l:1]),

ρ(E[(I − J)>B>1+l:1B1+l:1(I − J)]))
(13)

so that λ < 1. The multi-step contraction property is stated as
follows.

Lemma 6. Let Assumptions 2 and 3 hold. Take l as in
Lemma 5 and λ from (13). Then,

a) Et[‖(I − J)At+l:tXt‖2] ≤ λ‖Xt − 1x̄>t ‖2.
b) Et[‖Bt+l:t(I − vt1

>)Yt‖2] ≤ λ‖(I − vt1
>)Yt‖2.

Proof. The lemma is proved exactly in the same way as
Lemma 3. Just notice that

(I − J)At+l:tXt = (I − J)At+l:t(I − J)Xt

= (I − J)At+l:t(Xt − 1x̄>t )

since At+l:t is row-stochastic. On the other hand,

Bt+l:t(I − vt1
>)Yt = Bt+l:t(I − J)(I − vt1

>)Yt.

since vt is a probability vector.

2) Linear system of inequalities: As in Section IV-A,
the proof for Theorem 1 also relies on the derivation of a
linear system of inequalities. Nevertheless, since there is a
contraction only every l+1 steps, we need to take into account
the values of relevant quantities for l+1 consecutive iterations
and the system becomes l + 1 times larger. Given that the
mixing matrices are no longer doubly stochastic, the variables
that come into play also need to be modified accordingly. We
consider the following quantities

d′t = E[‖u>t Xt − x?‖2], et = E[f(x̄t)− f(x?)],

ρt = E[‖Xt − 1x̄>t ‖2], ζ ′t = E[‖Yt − vt1
>Yt‖],

ψ′t = E[‖∇F (Xt)−∇F (Zt)‖2].

Compared to (4), we define d′t because we no longer have
1>AtXt = 1>Xt while it holds ut+1AtXt = utXt. The
definition of ζ ′t is consistent with Lemma 6b. Finally, we also
replace ψt by ψ′t for technical reasons. Note that the value of
d′t depends on T since its definition involves ut.

The following two lemmas collects several inequalities that
will be useful for our proof.

Lemma 7. It holds that

a) ‖Dt‖ ≤ 1.
b) ‖u>t Xt − x̄t‖2 ≤ ‖Xt − 1x̄>t ‖2.
c) The spectral norm of a row- or column-stochastic matrix

of size M ×M is not larger than
√
M .

Proof. a) is trivial and c) can be proven by using the fact
that the spectral norm of a matrix is bounded by its Frobenius
norm. As for b), since ut is a probability vector,

‖u>t Xt − x̄t‖2 =

∥∥∥∥∥
M∑
i=1

utix
t
i − x̄t

∥∥∥∥∥
2

≤
M∑
i=1

uti‖xti − x̄t‖2

≤
M∑
i=1

‖xti − x̄t‖2 = ‖Xt − 1x̄>t ‖2.

In the above we have used the notation ut = (uti)i∈V .
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Lemma 8. Let Assumption 1 hold and (Bt)t∈N be column-
stochastic. We have

a) E[‖Gt − vt1
>Gt‖2] ≤ 2ζ ′t + (4M + 4)ψ′t.

b) E[‖Gt‖2] ≤ 4ML2ρt + (8M + 8)ψ′t + 4ζ ′t + 8M2Let.

Proof. See Appendix C.

Since the sampling is not uniform, Lemma 2 does not hold
anymore and we need to approximate Gt by vt1

>Gt when
deriving the descent inequality. Given the definition of d′t and
the fact that the nodes are sampled, we say that the effective
step-size at time t is ηαt with

αt = u>t Dtvt.

The following lemma controls E[αtχt] for any real-valued
non-negative random variable χt that is Ft-measurable.

Lemma 9. Let Assumptions 2–4 hold. We define p =
mini∈V pi, πA = mini∈V [πA]i, and α = πAνp. Then, α > 0
and for any Ft-measurable real-valued non-negative random
variable χt, we have

αE[χt] ≤ E[αtχt] ≤ E[χt]. (14)

Proof. See Appendix D.

We are now ready to state and prove the linear system of
inequalities in question. We denote by P ⊗Q the Kronecker
product of two matrices P and Q, and write Ekij for the matrix
of size k × k that has a single non-zero entry with value 1 at
position (i, j).

Proposition 2. For t ∈ {1, ..., T − l}, let α be defined as in
Lemma 9 and r′t ∈ R4(l+1) be defined by

r′t = [d′t+l . . . d
′
t ρt+l . . . ρt ψ

′
t+l . . . ψ

′
t ζ
′
t+l . . . ζ

′
t]
>.

We also define W1,W2 ∈ R(l+1)×(l+1) as

W1 =



0 · · · · · · · · · 0

1
. . .

...

0
. . .

. . .
...

...
. . .

. . .
. . .

...

0 · · · 0 1 0


, W2 =



1 · · · · · · · · · 1

0 · · · · · · · · · 0

...
. . .

. . .
...

...
. . .

. . .
...

0 · · · · · · · · · 0


.

Then, under Assumptions 1–4, if PPDS is run with η ≤
α/(16ML), we have

r′t+1 ≤ (Q0 + ηQe)r
′
t (15)

where

Q0 = I4 ⊗W1 + c13E
4
4,3 ⊗W2 +

1 + λ

2
(E4

1,1 + E4
3,3)⊗ El+1

1,l+1

+
(
E4

1,1 +
(

1−
p

2

)
E4

3,3 + c10E
4
3,2

)
⊗ El+1

1,1 .

and

Qe =

−c1 c2 c3 c4
0 0 0 0
c9 0 c11 c12
0 0 0 0

⊗ El+1
1,1 +

 0 0 0 0
c5 c6 c7 c8
0 0 0 0
0 0 0 0

⊗W2

are defined with positive constants (ck)1≤k≤13 that are
entirely determined by µ,L,M, λ, l, p, and α.

Proof. We will make use of the inequality

et ≤ L2(d′t + ρt). (16)

This comes from the simple fact that

f(x̄t)− f(x?) ≤
L2

2
‖x̄t − x?‖2

≤ L2(‖u>t Xt − x̄t‖2 + ‖u>t Xt − x?‖2)

≤ L2(‖Xt − 1x̄>t ‖2 + ‖u>t Xt − x?‖2).

Also notice that ‖DtYt+ 1
2
‖ can be bounded as

‖DtYt+ 1
2
‖ = ‖DtGt‖ ≤ ‖Dt‖‖Gt‖ ≤ ‖Gt‖. (17)

Now, let us fix t ∈ {l+1, ..., T −1}. We bound ρt+1, ζ
′
t+1,

ψ′t+1, and d′t+1 in terms of the previous values of these same
variables.

Bounding d′t+1. We decompose

‖u>t+1Xt+1 − x?‖2

= ‖u>t+1AtXt − ηu>t+1AtDtYt+ 1
2
− x?‖2

= ‖u>t Xt − x?‖2 + η2‖u>t DtYt+ 1
2
‖2

− 2η〈u>t Xt − x?,u
>
t DtYt+ 1

2
〉.

With (17), the second term can be easily bounded using

‖u>t DtYt+ 1
2
‖ ≤ ‖ut‖‖DtYt+ 1

2
‖ ≤ ‖Gt‖.

As for the third term, it can be further decomposed as

〈u>t Xt − x?,u
>
t DtYt+ 1

2
〉

= 〈u>t Xt − x̄t,u
>
t DtGt〉

+ 〈x̄t − x?,u
>
t Dt(Gt − vt1

>Gt)〉
+ 〈x̄t − x?,u

>
t Dtvt1

>Gt〉, (18)

where we used again DtYt+ 1
2

= DtGt. Let us bound the three
terms separately. Using Lemma 8b, for any δ1 > 0, we have

E[−2η〈u>t Xt − x̄t,u
>
t DtGt〉]

≤ E[ηδ1‖u>t Xt − x̄t‖2 +
η

δ1
‖u>t DtGt‖2]

≤ ηδ1 E[‖Xt − 1x̄>t ‖2] +
η

δ1
E[‖Gt‖2]]

≤ ηδ1ρt +
η

δ1
(4ML2ρt + (8M + 8)ψ′t + 4ζ ′t + 8M2Let).

With Lemma 7b and Lemma 8a, we can bound the second
term of (18) for any δ2 > 0 as

E[−2η〈x̄t − x?,u
>
t Dt(Gt − vt1

>Gt)〉]

≤ E[ηδ2‖x̄t − x?‖2 +
η

δ2
‖u>t Dt(Gt − vt1

>Gt)‖2]

≤ 2ηδ2 E[‖x̄t − u>t Xt‖2] + 2ηδ2 E[‖u>t Xt − x?‖2]

+
η

δ2
E[‖Gt − vt1

>Gt‖2]

≤ 2ηδ2ρt + 2ηδ2d
′
t +

η

δ2
(2ζ ′t + (4M + 4)ψ′t). (19)
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To bound the last term of (18), we use 1>Gt =∑M
i=1∇ fi(xti). Following (7), we then get

〈x̄t − x?,1
>Gt〉

≥ M

2
(f(x̄t)− f(x?)) +

µM

4
‖x̄t − x?‖2 −

L

2
‖Xt − 1x̄>t ‖2

≥ M

2
(f(x̄t)− f(x?)) +

µM

8
‖u>t Xt − x?‖2

− µM

4
‖x̄t − u>t Xt‖2 −

L

2
‖Xt − 1x̄>t ‖2.

Applying Lemma 9 and Lemma 7b gives

E[−2ηαt〈x̄t − x?,1
>Gt〉] ≤ −ηαMet −

ηαµM

4
d′t

+ η

(
L+

µM

2

)
ρt.

We recall that αt = vtDtut. Putting all together and choosing
δ1 = 16ML/α and δ2 = αµM/16, we obtain

d′t+1 ≤
(

1− ηαµM

4

)
d′t − ηαMet

+ η

(
L+

µM

2

)
ρt +

16ηML

α
ρt

+
( ηα

16ML
+ η2

)
· (4ML2ρt + (8M + 8)ψ′t + 4ζ ′t + 8M2Let)

+
ηαµM

8
ρt +

ηαµM

8
d′t +

16η

αµM
(2ζ ′t + (4M + 4)ψ′t).

The coefficient of et is −ηM
(α
2 − 8ηML

)
. Since η ≤

α/(16ML), this is non-positive and we have indeed

d′t+1 ≤ (1− c1η)d′t + c2ηρt + c3ηψ
′
t + c4ηζ

′
t

for some positive constants (ck)1≤k≤4.

Bounding ρt+1. Let s ∈ {1, . . . , t}. As the matrices
(At)t∈N are row-stochastic, it holds

(I − J)At:s+1(I − J)As = (I − J)At:s+1As

= (I − J)At:s+1As(I − J).

Hence, for any δ > 0, we can write

‖(I − J)At:s+1(I − J)Xs+1‖2

= ‖(I − J)At:s+1(I − J)As(Xs − ηDsYs+ 1
2
)‖2

≤ (1 + δ)‖(I − J)At:s(I − J)Xs‖2

+

(
1 +

1

δ

)
η2‖I − J‖2‖At:s‖2‖DsYs+ 1

2
‖2

≤ (1 + δ)‖(I − J)At:s(I − J)Xs‖2 +

(
1 +

1

δ

)
η2M‖Gs‖2.

(20)
In the last line we have used the fact that At:s is row-stochastic
so that ‖At:s‖ ≤

√
M and the inequality ‖DsYs+ 1

2
‖ ≤ ‖Gs‖.

Since Xt+1−1x̄>t+1 = (I−J)At:t+1(I−J)Xt+1, applying
(20) repeatedly then gives

‖Xt+1 − 1x̄>t+1‖2 ≤ (1 + δ)l+1‖(I − J)At:t−l(I − J)Xs‖2

+ η2M

(
1 +

1

δ

) l∑
s=0

(1 + δ)s‖Gt−s‖2.

Let δ = 1
l+1 log 1+λ

2λ > 0 so that for all 0 ≤ s ≤ l + 1, we
have (1 + δ)s ≤ 1+λ

2λ < 1
λ . Taking expectation in the above

inequality and invoking Lemma 6a and Lemma 8b leads to

ρt+1 ≤
1 + λ

2
ρt−l +

η2M

λ

(
1 +

1

δ

) l∑
s=0

∆t−s,

where ∆t−s = 8M2Let−s + 4ML2ρt−s + (8M + 8)ψ′t−s +
4ζ ′t−s. With (16) and η ≤ α/(16ML) we thus see there exist
positive constants (ck)5≤k≤8 such that

ρt+1 ≤
1 + λ1

2
ρt+η

l∑
s=0

(c5d
′
t−s+c6ρt−s+c7ψ

′
t−s+c8ζ

′
t−s).

Bounding ψ′t+1. By Young’s inequality,

‖∇ fi(zt+1
i )−∇ fi(xt+1

i )‖2 ≤ 2− pi
2− 2pi

‖∇ fi(zt+1
i )−∇ fi(xt

i)‖2

+
2− pi
pi
‖∇ fi(xt

i)−∇ fi(xt+1
i )‖2.

The update rule of zti implies that

Et[‖∇ fi(zt+1
i )−∇ fi(xti)‖2]

= (1− pi)‖∇ fi(zti)−∇ fi(xti)‖2

+ pi‖∇ fi(xti)−∇ fi(xti)‖2

= (1− pi)‖∇ fi(zti)−∇ fi(xti)‖2.
With p = mini∈V pi as defined in Lemma 9, we then have

Et[‖∇ fi(zt+1
i )−∇ fi(xt+1

i )‖2]

≤
(

1− pi
2

)
‖∇ fi(zti)−∇ fi(xti)‖2

+
2

pi
Et[‖∇ fi(xti)−∇ fi(xt+1

i )‖2]

≤
(

1−
p

2

)
‖∇ fi(zti)−∇ fi(xti)‖2

+
2

p
Et[‖∇ fi(xti)−∇ fi(xt+1

i )‖2].

Taking total expectation and summing from i = 1 to M gives

ψ′t+1 ≤
(

1−
p

2

)
ψ′t +

2

p
E[‖∇F (Xt)−∇F (Xt+1)‖2].

By Lipschitz-continuity of the gradients, it holds ‖∇F (Xt)−
∇F (Xt+1)‖ ≤ L‖Xt −Xt+1‖. We then develop

Xt+1 −Xt = At(Xt − ηDtYt+ 1
2
)−Xt

= (At − I)(I − J)Xt − ηAtDtYt+ 1
2
.

With ‖At− I‖2 ≤ 2‖At‖2 + 2‖I‖2 ≤ 2M + 2, we obtain that

‖∇F (Xt)−∇F (Xt+1)‖2

≤ L2((4M + 4)‖Xt − 1x̄>t ‖2 + 2η2M‖Gt‖2).

Combining the above and applying Lemma 8b leads to

ψ′t+1 ≤
(

1−
p

2

)
ψ′t +

2L2

p
((4M + 4)ρt

+ 2η2M(4ML2ρt + (8M + 8)ψ′t + 4ζ ′t + 8M2Let)).

Using (16) and η ≤ α/(16ML) we deduce the existence of
positive constants (ck)9≤k≤12 such that

ψ′t+1 ≤ c9ηd′t + c10ρt +
(

1−
p

2
+ c11η

)
+ c12ηζ

′
t.



HSIEH et al.: PUSH–PULL WITH DEVICE SAMPLING 11

Bounding ζ ′t+1. Let s ∈ {1, . . . , t}. Using the column-
stochasticity of Bs and the definition vs+1 = Bsvs, we get

(I − vs+11
>)Bs = Bs − vs+11

> = Bs −Bsvs1>.
Hence, for any δ > 0, it holds that

‖Bt:s+1(I − vs+11
>)Ys+1‖2

= ‖Bt:s+1(I − vs+11
>)Bs(Ys +Ds(∇F (Xs)−∇F (Zs)))‖2

≤ (1 + δ)‖Bt:s(I − vs1
>)Ys‖2

+

(
1 +

1

δ

)
‖Bt:s −Bt:svs1

>‖2‖Ds‖2‖∇F (Xs)−∇F (Zs)‖2

≤ (1 + δ)‖Bt:s(I − vs1
>)Ys‖2

+ 4M

(
1 +

1

δ

)
‖∇F (Xs)−∇F (Zs)‖2. (21)

In the last inequality we have used

‖Bt:s −Bt:svs1>‖ ≤ ‖Bt:s‖+ ‖Bt:svs1>‖ ≤ 2
√
M

which is true because both Bt:s and Bt:svs1
> are column-

stochastic.
Since Yt+1 − vt+11

>Yt+1 = Bt:t+1(I − vt+11
>)Yt+1,

applying (21) repeatedly then gives

‖Yt+1 − vt+11
>Yt+1‖2

≤ (1 + δ)l+1‖Bt:t−l(I − vt−l1
>)Yt−l‖2

+ 4M

(
1 +

1

δ

) l∑
s=0

(1 + δ)s‖∇F (Xt−s)−∇F (Zt−s)‖2.

Let us take δ = 1
l+1 log 1+λ

2λ > 0 as before. Taking total
expectation in the above inequality and invoking Lemma 6b
leads to

ζ ′t+1 ≤
1 + λ2

2
ζ ′t−l +

4M

λ

(
1 +

1

δ

) l∑
s=0

ψ′t−s.

We set c13 = 4M
λ

(
1 + 1

δ

)
.

Conclude. Putting all together we get exactly (15).

3) Geometric convergence of PPDS: From Proposition 2,
we are now in position to prove the geometric convergence
of PPDS by showing that the spectral radius of Q0 + ηQe is
smaller than 1 for η > 0 sufficiently small.

Proof of Theorem 1. In the following we analyze the eigen-
values of Q0 + ηQe with help of matrix perturbation theory.
We first notice that Q0 is a block-triangular matrix. Its char-
acteristic polynomial can be easily computed and is given by

PQ0
(ν) = ν2l(ν − 1)

(
ν −

(
1−

p

2

))(
νl+1 − 1 + λ

2

)2

.

This shows that the spectral radius of Q0 is 1 and 1 is also
the unique eigenvalue of largest modulus of the matrix.

Let us denote by θ1 = 1, θ2, . . . , θ4(l+1) the eigenvalues of
Q0 so that |θk| < 1 for all k ∈ {2, ..., 4(l+1)}. By continuity
of the eigenvalues, for any ε > 0 there exists δ > 0 such that
if η < δ, for any θk of multiplicity m the matrix Q0 + ηQe
has exactly m eigenvalues (counting multiplicity) in B(θk, ε),
the open disk centered at θk with radius ε; see [39, Chap.
5.1]. Let us take ε small enough such that all the eigenvalues

of Q0 + ηQe are smaller than 1 − ε in modulus except the
greatest one. For η < δ, we can then define θ1(η) as the unique
eigenvalue of Q0 + ηQe that is in B(1, ε). We will now show
that |θ1(η)| < 1 for η sufficiently small. For this, let

u = [1 0 . . . 0]>, v = [1 . . . 1︸ ︷︷ ︸
l+1 times

0 . . . 0]>

be respectively the left and the right eigenvector of Q0

associated with the eigenvalue 1. By [40, Th. 6.3.12] (see also
[41, Th. 1]), we have

θ′1(0) =
u>Qev

u>v
= −c1 < 0.

As a consequence, |θ1(η)| < 1 for η sufficiently small and
subsequently ρ(Q0 + ηQe) < 1.

In order to conclude, we need to get rid of the dependence
on T which plays a role in the definition of the vectors
(ut)1≤t≤T and the quantities (d′t)1≤t≤T . We recall that dt =
E[‖x̄t − x?‖2]. As in (19), we have both dt ≤ 2d′t + 2ρt and
d′t ≤ 2dt + 2ρt. Let us define r′′t by replacing (d′s)t≤s≤t+l
by (ds)t≤s≤t+l in r′t. The above inequalities can then be
translated into r′′t ≤ Wr′t and r′t ≤ Wr′′t for a non-negative
matrix W properly defined. Note that neither W nor Q0+ηQe
depend on t or T . Therefore, the inequality

r′′t ≤W (Q0 + ηQe)
t−1Wr′′1

which holds for all t ∈ N guarantees the geometric conver-
gence of r′′t and subsequently of all the relevant quantities
when η is small enough.

Finally, from the geometric convergence of E[‖xti − x?‖2],
we deduce that xti converges to x? almost surely by using
Markov’s inequality and the Borel–Cantelli lemma.

V. SIMULATIONS

In this section, we illustrate the interest of PPDS for
asynchronous decentralized optimization on a) a synthetic
ridge regression problem; and b) a logistic regression problem
on a real dataset. The code to reproduce the experiments can
be found at https://github.com/yassine-laguel/ppds.

TABLE I
DATASETS AND GRAPH DESCRIPTION

Synthetic EMNIST

Number of features d 10 784
Number of examples 10000 2500

Devices M 100 50
Local size nlocal 100 50
RGG radius r 0.2 0.3
Sampled nodes / round 20 10
Sampled neighbors / communication 1 1

A. Dataset, tasks and models

For both problems, we minimize an objective of the form

f(x) =
1

M

M∑
i=1

nlocal∑
j=1

fi,j(x) + λ‖x‖22


︸ ︷︷ ︸

fi(x)

https://github.com/yassine-laguel/ppds
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Fig. 1. Numerical illustrations for Ridge regression on synthetic dataset.

that is, each worker i has a local dataset of nlocal examples and
a Tikhonov regularization term with parameter λ = 1/nlocal.
Since the local objectives are convex, this regularization make
the problem strongly convex.

We form the communication networks by generating Ran-
dom Geometric Graphs (RGG) using the library networkx
[42] with different number of nodes M and radius r for each
experiment. We consider the broadcast setting illustrated in the
third example of Section II-C. Precisely, all activated nodes
broadcast their models to one (randomly chosen) neighbor
during a communication step. We illustrate the effect of
device sampling by comparing algorithms with full-device
participation and with random device sampling (20 nodes for
the synthetic dataset and 10 nodes for EMNIST). The relevant
parameters are reported in Table I.

a) Ridge regression on synthetic dataset: For this prob-
lem, the local losses are defined as

fi,j(x) = (bi,j − x>ai,j)
2

where (ai,j , bi,j) ∈ Rd × R are data points generated using
the procedure make_regression from scikit-learn
[43]. Different seeds are used for different nodes, yielding
statistically heterogeneous distributions between the nodes.

b) Logistic regression on EMNIST: The EMNIST dataset
[44] is comprised of images of handwritten digits and letters
from several authors. We consider the problem of finding
which character is written from its image. For this, we consider
local losses of the form

fi,j(x) = −bi,j log
(
softmax(x>ai,j)

)
where the (ai,j , bi,j) are respectively d = 28 × 28 gray-scale
images of handwritten digits character and their associated
one-hot label bi,j ∈ (0− 9, a− z,A− Z) totaling 62 classes.

Each worker’s local dataset comes from images from the same
author.

B. Algorithms, hyperparameters and evaluation metrics

We compare the proposed algorithm PPDS with several
baselines: Decentralized Gradient Descent (DGD) with and
without sampling, Push–Pull and G-Push–Pull. The same
broadcast communication scheme is applied to all the methods,
and the same uniform sampling strategy is adopted whenever
device sampling is involved.

For each method, the stepsize is taken fixed, tuned with a
coarse-to-fine strategy: we first select the stepsize η1 within
{10−k,−2 ≤ k ≤ 5} yielding the best global training loss;
then, a second search is performed over {η12k,−2 ≤ k ≤ 2}.

We report two evaluation metrics: (i) the distance to con-
sensus (1/M)

∑M
i=1‖xti− x̄t‖2; and (ii) the functional subop-

timality (1/M)
∑M
i=1 f(xti)−f?. For the synthetic dataset, the

optimal solution is computed by inversion of a linear system.
For the real dataset, it is set as the best solution in terms of
final training losses found by the implemented algorithms.

For each experiment, we report these metrics in terms of
three different measures: (i) number of iterations; (ii) commu-
nication cost, i.e., the cumulative number of activated commu-
nication links; and (iii) number of local updates. These cover
different aspects that influence the efficiency of distributed
optimization.

C. Numerical results

First, we observe on Figs. 1 and 2 that the proposed
method PPDS converges linearly, as expected from Theorem 1.
Furthermore, looking at the right-hand plots, we see that PPDS
outperforms all the other methods when it comes to measuring
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Fig. 2. Numerical illustrations for logistic regression on EMNIST.

the functional optimality with respect to the number of local
updates. This illustrates that PPDS indeed saves computational
resources, by an efficient interplay between computation and
communications. Concerning the communication complexity
(middle plots), PPDS is at least as competitive as G-Push–
Pull, which was shown in [15] to beat other baselines. Finally,
we observe that Push–Pull, as a synchronous gradient-tracking
method, naturally achieves the best performance when mea-
suring in terms of the number of iterations (left-hand plots),
but tends to be less efficient when we consider the actual
communication and computational costs.

VI. CONCLUSIONS

In this paper, we showed how device sampling can be
incorporated in asynchronous decentralized gradient descent,
by extending the Push–Pull method. We proved linear conver-
gence of the method on strongly convex functions and validate
our approach on problems with synthetic and real data. This
work also opens towards several research directions, includ-
ing the combination of device sampling with local gradients
computation or with gradient compression techniques.

APPENDIX

A. Proof of Lemma 4

Proof. a) Since fi is L-smooth, it holds for all x,x′ ∈ Rd
that

‖∇ fi(x)−∇ fi(x′)‖2 ≤ 2L(fi(x)− fi(x′)− 〈x−x′,∇ fi(x′)〉).

Subsequently,

M∑
i=1

‖∇ fi(xt
i)−∇ fi(x?)‖2

≤ 2

M∑
i=1

‖∇ fi(xt
i)−∇ fi(x̄t)‖2 + 2

M∑
i=1

‖∇ fi(x̄t)−∇ fi(x?)‖2

≤ 2L2
M∑
i=1

‖xt
i − x̄t‖2

+ 4L

M∑
i=1

(fi(x̄t)− fi(x?)− 〈x̄t − x?,∇ fi(x?)〉)

= 2L2‖Xt − 1x̄>
t ‖2

+ 4ML(f(x̄t)− f(x?)− 〈x̄t − x?,∇ f(x?)〉)
= 2L2‖Xt − 1x̄>

t ‖2 + 4ML(f(x̄t)− f(x?)).

In the last line we used that ∇ f(x?) = 0. Taking expectation
gives the desired inequality.

b) The inequality is straightforward from a) and the follow-
ing decomposition

‖∇F (Xt)−∇F (Zt)‖2

≤ 2‖∇F (Xt)−∇F (1>x?)‖2 + 2‖∇F (1>x?)−∇F (Zt)‖2.

c) We first decompose

‖Gt‖2 = ‖(I − J)Gt + JGt‖2 = ‖(I − J)Gt‖2 + ‖JGt‖2.

For the first term we simply use the definition of Gt to obtain

‖(I − J)Gt‖2

≤ 2‖(I − J)Y ‖2 + 2‖(I − J)(∇F (Xt)−∇F (Zt))‖2

≤ 2‖Yt − 1ȳ>
t ‖2 + 2‖∇F (Xt)−∇F (Zt)‖2.
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From Lemma 1b, we know that
∑M
i=1 g

t
i =

∑M
i=1∇ fi(xti)

or equivalently JGt = J ∇F (Xt). Thus for the second term
we use again ∇ f(x?) = 0 to get

‖JGt‖2 = M
∥∥∥ 1

M

M∑
i=1

∇fi(xt
i))
∥∥∥2

= M
∥∥∥ 1

M

M∑
i=1

∇ fi(xt
i)−

1

M

M∑
i=1

∇ fi(x?)
∥∥∥2

≤
M∑
i=1

‖∇ fi(xt
i)−∇ fi(x?)‖2.

Combining the above, taking expectation, and using a) and
b) gives the desired result.

B. Proof of Eq. (11)

Proof. Let Qk denotes the k-th column of Q and ek denote
the k-th canonical vector of R4. First, ω>Q1 = 1 − ηµS

2M =

(1− ηµS
2M ) ω>e1.

Since η ≤ (1−λ)2
14L

√
M
S , it holds

ω>Q2 =

√
S(1− λ)

M
3
2

(
ηL

1− λ

√
S

M
+

10η2L2

1− λ

(
S

M

) 3
2

+
1 + λ

2
+

20η2L2S

M(1− λ)
+

ηL

4(1− λ)

√
S

M

)

≤
√
S(1− λ)

M
3
2

(
5ηL

4(1− λ)

√
S

M
+

30η2L2S

M(1− λ)
+

1 + λ

2

)

≤
√
S(1− λ)

M
3
2

3 + λ

4
=

3 + λ

4
ω>e2.

With η ≤ (1−λ)2
2304L

(
M
S

) 3
2 , we have

ω>Q3 =
η(1− λ)

96ML

(
192ηL

1− λ

(
S

M

)2

+
384ηL

1− λ

(
S

M

) 3
2

+
1 + λ

2

)

≤ η(1− λ)

96ML

(
576ηL

1− λ

(
S

M

) 3
2

+
1 + λ

2

)

≤ η(1− λ)

96ML

3 + λ

4
=

3 + λ

4
ω>e3.

Similarly, using η ≤ 1
576L

√
M
S , we get

ω>Q4 =
η

12ML

(
48ηL

(
S

M

)2

+ 96ηL

(
S

M

) 3
2

+
S

2M
+ 1− S

M

)

≤ η

12ML

(
1− S

2M
+ 144ηL

(
S

M

) 3
2

)

≤ η

12ML

(
1− S

4M

)
=

(
1− S

4M

)
ω>e4.

As for et, we note that η ≤ (1−λ)2
2304L

(
M
S

) 3
2 < 1

120L

(
M
S

) 3
2 and

thus

ω>h = −ηS
M

+
20η2LS2

M2
+ 40η2L

(
S

M

) 3
2

+
ηS

6M
+

ηS

3M

≤ − ηS

2M
+ 60η2L

(
S

M

) 3
2

≤ 0.

As η ≤ (1−λ)2
14L

√
M
S implies that 1− ηµS

2M ≥
3+λ
4 , we have

ω>Q ≤ γ ω>I

where the inequality is elementwise and γ =

max
(

1− ηµS
2M , 1− S

4M

)
. Since all the involved terms

are non-negative, combining with the above inequalities gives

ω>rt+1 = ω>Q rt + et ω
>h ≤ γ ω>rt

which concludes the proof.

C. Proof of Lemma 8
Proof. a) From the definition of gt we can write

‖Gt − vt1
>Gt‖2

= ‖Yt − vt1
>Yt + (I − vt1

>)(∇F (Xt)−∇F (Zt))‖2

≤ 2‖Yt − vt1
>Yt‖2 + 2‖I − vt1

>‖2‖∇F (Xt)−∇F (Zt)‖2.

We conclude by using

‖I − vt1
>‖2 ≤ 2‖I‖2 + 2‖vt1>‖2 ≤ 2M + 2.

and taking expectation over the above inequalities.
b) By Young’s inequality,

‖Gt‖2 ≤ 2‖Gt − vt1
>Gt‖2 + 2‖vt1

>Gt‖2.

Using 1>Gt = 1>∇F (X), ∇ f(x?) = 0, and the fact that
vt is a probability vector, we deduce that

‖vt1
>Gt‖2 =

M∑
i=1

∥∥∥∥∥vt
i

M∑
j=1

∇ fj(xt
j)

∥∥∥∥∥
2

≤

∥∥∥∥∥
M∑
j=1

∇ fj(xt
j)

∥∥∥∥∥
2

=

∥∥∥∥∥
M∑
i=1

∇ fi(xt
i)−

M∑
i=1

∇ fi(x?)

∥∥∥∥∥
2

≤M
M∑
i=1

∥∥∇ fi(xt
i)−∇ fi(x?)

∥∥2 .
Combining the above two inequalities with a) and Lemma 4a

we get the desired result.

D. Proof of Lemma 9

Proof. Using the independence assumption, we can write

E[αtχt] = E[u>t+1AtDtvtχt] = E[u>t+1]E[AtDt]E[vtχt].

From Assumption 3c we deduce that

E[AtDt] ≥ E[diag(ν1)Dt] = ν diag(p),
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where p = (pi)i∈V . We have shown in (12) that E[ut+1] =
πA. Notice that all the elements of πA are positive according
to the Perron-Frobenius theorem. Thus, πA > 0 and we have

E[u>t+1]E[AtDt] ≥ π>Aν diag(p) ≥ α1>

where Assumption 4 ensures that p > 0 and thus α > 0.
On the other hand, ut being a probability vector we can

always upper bound u>t Dt by 1>. Using the non-negativity
of vt and χt, we then obtain

αE[1>vtχt] ≤ E[αtχt] ≤ E[1>vtχt].

This is exactly (14) since vt is a probability vector.

ACKNOWLEDGMENT

This research was partially supported by MIAI@Grenoble
Alpes (ANR-19-P3IA-0003).

REFERENCES

[1] J. Tsitsiklis, D. Bertsekas, and M. Athans, “Distributed asynchronous
deterministic and stochastic gradient optimization algorithms,” IEEE
transactions on automatic control, vol. 31, no. 9, pp. 803–812, 1986.

[2] D. Bertsekas and J. Tsitsiklis, Parallel and distributed computation:
numerical methods. Athena Scientific, 2015.
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