Decision-Making in Multi-Agent Systems Delays, Adaptivity, and Learning in Games

Yu-Guan Hsieh

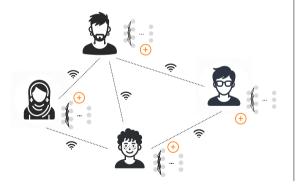
Illustrating Examples: Generated Images

Collective improvement of a model by a group of users

Market of cloud GPU platforms

Illustrating Examples: Manually Created Images

Collective improvement of a model by a group of users



Market of cloud GPU platforms

• Non-stationary environment [Online learning]

3/51

- Non-stationary environment [Online learning]
- Conflicting interests [Game theory]

- Non-stationary environment [Online learning]
- Conflicting interests [Game theory]
- Lack of coordination

- Non-stationary environment [Online learning]
- Conflicting interests [Game theory]
- Lack of coordination
- Asynchronicity and delays

- Non-stationary environment [Online learning]
- Conflicting interests [Game theory]
- Lack of coordination
- Asynchronicity and delays
- Uncertainty

- Non-stationary environment [Online learning]
- Conflicting interests [Game theory]
- Lack of coordination
- Asynchronicity and delays
- Uncertainty
- Need for adaptive methods

Plan

Part I: Learning in the Presence of Delays & Asynchronicities

Common challenges: adaptive learning, lack of coordination, non-stationarity

Part II: Adaptive Learning in Continuous

Games with Noisy Feedback

Plan

Part I: Learning in the Presence of Delays & Asynchronicities

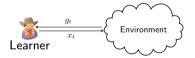
Common challenges: adaptive learning, lack of coordination, non-stationarity

Part II: Adaptive Learning in Continuous

Games with Noisy Feedback

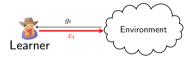
At each round $t = 1, 2, \ldots$, the learner

- Plays an action $x_t \in \mathcal{X}$
- Suffers loss $\ell_t(x_t)$ and receives feedback g_t



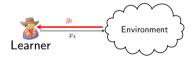
At each round $t = 1, 2, \ldots$, the learner

- Plays an action $x_t \in \mathcal{X}$
- Suffers loss $\ell_t(x_t)$ and receives feedback g_t



At each round $t = 1, 2, \ldots$, the learner

- Plays an action $x_t \in \mathcal{X}$
- Suffers loss $\ell_t(x_t)$ and receives feedback g_t

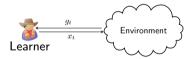


At each round $t = 1, 2, \ldots$, the learner

- Plays an action $x_t \in \mathcal{X}$
- Suffers loss $\ell_t(x_t)$ and receives feedback g_t
- Regret of the learner with respect to $p \in \mathcal{X}$ is

$$\operatorname{Reg}_{T}(p) = \sum_{t=1}^{T} \left(\underbrace{\ell_{t}(x_{t}) - \ell_{t}(p)}_{t} \right)$$

cost of not playing \boldsymbol{p} in round \boldsymbol{t}



At each round $t = 1, 2, \ldots$, the learner

- Plays an action $x_t \in \mathcal{X}$
- Suffers loss $\ell_t(x_t)$ and receives feedback g_t
- Regret of the learner with respect to $p \in \mathcal{X}$ is

$$\operatorname{Reg}_{T}(p) = \sum_{t=1}^{T} \left(\underbrace{\ell_{t}(x_{t}) - \ell_{t}(p)}_{t} \right)$$

 $\overbrace{\substack{g_t\\ \text{Learner}}}^{g_t} \left(\overbrace{\text{Environment}}^{\text{Environment}} \right)$

cost of not playing p in round t

• Online convex optimization: ℓ_t is convex with $\nabla \ell_t(x_t)$ a (sub)gradient

At each round $t = 1, 2, \ldots$, the learner

- Plays an action $x_t \in \mathcal{X}$
- Suffers loss $\ell_t(x_t)$ and receives feedback g_t
- Regret of the learner with respect to $p \in \mathcal{X}$ is

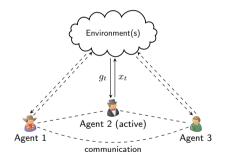
$$\operatorname{Reg}_{T}(p) = \sum_{t=1}^{T} \left(\underbrace{\ell_{t}(x_{t}) - \ell_{t}(p)}_{t} \right)$$

cost of not playing p in round t

- Online convex optimization: ℓ_t is convex with $\nabla \ell_t(x_t)$ a (sub)gradient
- Online learning with first-order feedback: $g_t \approx \nabla \ell_t(x_t)$

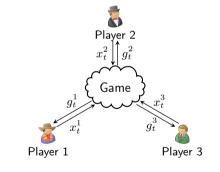
Source of Non-Stationarity

Part I: Learning in the Presence of Delays & Asynchronicities



The loss ℓ_t is given by the external environment

Part II: Adaptive Learning in Continuous Games with Noisy Feedback



The loss $\ell_t^i = \ell^i(\cdot, \mathbf{x}_t^{-i})$ comes from the interaction with other players

Part I: Learning in the Presence of Delays & Asynchronicities

Contributions for Part I

- A framework for asynchronous decentralized online learning
- Delayed dual averaging
- Template regret bound
- Adaptive learning rate with bounded delay assumption
- Adaptive learning rate without bounded delay assumption in single-agent setup
- Relation to distributed online learning
- Application to open network
- Optimistic variant

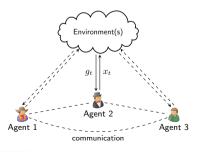
2. H., lutzeler, Malick, and Mertikopoulos. Optimization in Open Networks via Dual Averaging. CDC, 2021.

In this defense

^{1.} H., lutzeler, Malick, and Mertikopoulos. *Multi-agent online optimization with delays: Asynchronicity, adaptivity, and optimism.* JMLR, 2022.

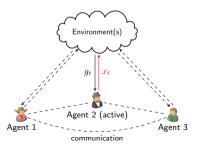
At each round $t = 1, 2, \ldots$, an agent i(t)

- Becomes active and plays an action $x_t \in \mathcal{X}$
- Suffers loss $\ell_t(x_t)$ and receives feedback $g_t = \nabla \ell_t(x_t)$
- Communicates with other agents



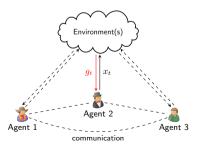
At each round t = 1, 2, ..., an agent i(t)

- Becomes active and plays an action $x_t \in \mathcal{X}$
- Suffers loss $\ell_t(x_t)$ and receives feedback $g_t = \nabla \ell_t(x_t)$
- Communicates with other agents



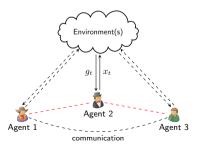
At each round $t = 1, 2, \ldots$, an agent i(t)

- Becomes active and plays an action $x_t \in \mathcal{X}$
- Suffers loss $\ell_t(x_t)$ and receives feedback $g_t = \nabla \ell_t(x_t)$
- Communicates with other agents



At each round $t = 1, 2, \ldots$, an agent i(t)

- Becomes active and plays an action $x_t \in \mathcal{X}$
- Suffers loss $\ell_t(x_t)$ and receives feedback $g_t = \nabla \ell_t(x_t)$
- Communicates with other agents



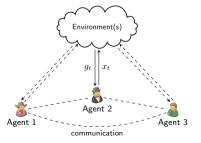
At each round $t = 1, 2, \ldots$, an agent i(t)

- Becomes active and plays an action $x_t \in \mathcal{X}$
- Suffers loss $\ell_t(x_t)$ and receives feedback $g_t = \nabla \ell_t(x_t)$
- Communicates with other agents

• Regret of the system with respect to $p \in \mathcal{X}$ is

$$\operatorname{Reg}_{T}(p) = \sum_{t=1}^{T} \left(\underbrace{\ell_{t}(x_{t}) - \ell_{t}(p)}_{t} \right)$$

cost of not playing p in round t



At each round $t = 1, 2, \ldots$, an agent i(t)

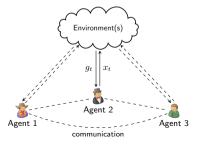
- Becomes active and plays an action $x_t \in \mathcal{X}$
- Suffers loss $\ell_t(x_t)$ and receives feedback $g_t = \nabla \ell_t(x_t)$
- Communicates with other agents

• Regret of the system with respect to $p \in \mathcal{X}$ is

$$\operatorname{Reg}_{T}(p) = \sum_{t=1}^{T} \left(\underbrace{\ell_{t}(x_{t}) - \ell_{t}(p)}_{t} \right)$$

 cost of not playing p in round t

• Communication: transmission of g_t



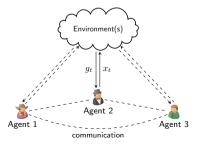
At each round $t = 1, 2, \ldots$, an agent i(t)

- Becomes active and plays an action $x_t \in \mathcal{X}$
- Suffers loss $\ell_t(x_t)$ and receives feedback $g_t =
 abla \ell_t(x_t)$ Potentially with delay
- Communicates with other agents Asynchronous communication
- Regret of the system with respect to $p \in \mathcal{X}$ is

$$\operatorname{Reg}_{T}(p) = \sum_{t=1}^{T} \left(\underbrace{\ell_{t}(x_{t}) - \ell_{t}(p)}_{t} \right)$$

 cost of not playing p in round t

• Communication: transmission of g_t



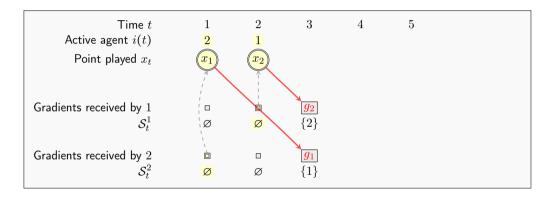
Time t Active agent $i(t)$ Point played x_t	1	2	3	4	5	
Gradients received by 1 \mathcal{S}^1_t						
Gradients received by 2 \mathcal{S}_t^2						

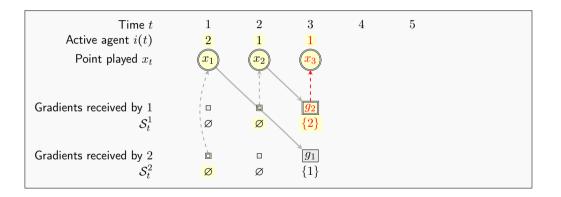
Time t Active agent $i(t)$ Point played x_t	1	2	3	4	5	
Gradients received by 1 \mathcal{S}^1_t	п Ø					
Gradients received by 2 \mathcal{S}_t^2	□ Ø					

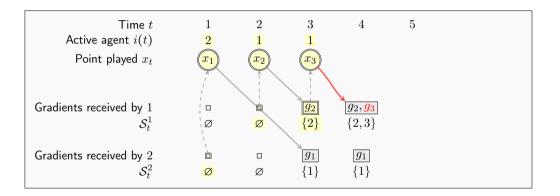
Time t	1	2	3	4	5	
Active agent $i(t)$	2					
Point played x_t	x_1					
	l l					
Gradients received by 1						
\mathcal{S}_t^1	Ø					
	A A A A A A A A A A A A A A A A A A A					
Gradients received by 2						
\mathcal{S}_t^2	Ø					

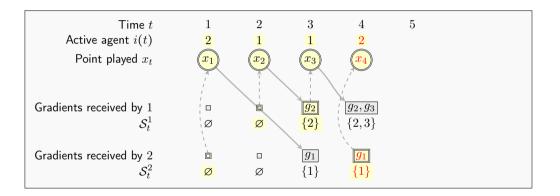
Time t Active agent $i(t)$ Point played x_t	$\frac{1}{\begin{pmatrix} x_1 \end{pmatrix}}$	2	3	4	5	
Gradients received by 1						
$\mathcal{S}_t^{\scriptscriptstyle 1}$ Gradients received by 2		Ø				
\mathcal{S}_t^2	Ø	Ø				

Time t Active agent $i(t)$	1	2	3	4	5	
, ,	4					
Point played x_t						
	į.					
Gradients received by 1						
\mathcal{S}_t^1	Ø	Ø				
	'					
Gradients received by 2	Ò					
\mathcal{S}_t^2	Ø	Ø				

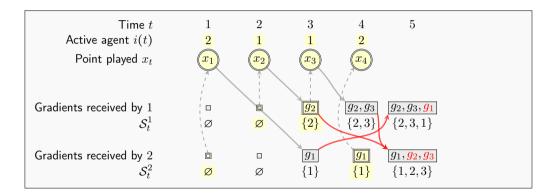




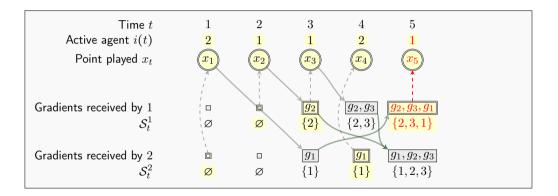




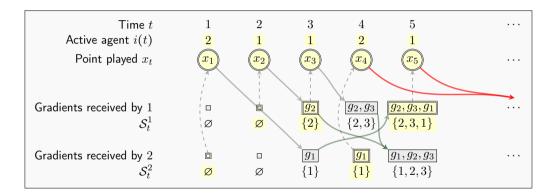
An Example With Two Agents



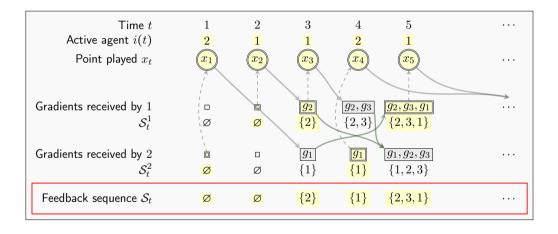
An Example With Two Agents



An Example With Two Agents

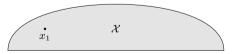


Feedback Sequence



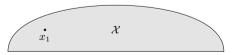
Dual averaging [Nesterov 09]	Delayed dual averaging [H. et al. 22]
$x_t = \Pi_{\mathcal{X}} \left(x_1 - \eta_t \sum_{s=1}^{t-1} g_s \right)$	$x_t = \Pi_{\mathcal{X}} \left(x_1 - \eta_t \sum_{s \in \mathcal{S}_t} g_s \right)$

- $\{g_s : s \in S_t\}$ are the gradients the active agent i(t) can use to compute x_t
- $\Pi_{\mathcal{X}}$ is Euclidean projection onto the set \mathcal{X}



Dual averaging [Nesterov 09]	Delayed dual averaging [H. et al. 22]
$x_t = \Pi_{\mathcal{X}}\left(x_1 - \eta_t \sum_{s=1}^{t-1} g_s\right)$	$x_t = \Pi_{\mathcal{X}} \left(x_1 - \eta_t \sum_{s \in \mathcal{S}_t} g_s \right)$

- $\{g_s : s \in S_t\}$ are the gradients the active agent i(t) can use to compute x_t
- $\Pi_{\mathcal{X}}$ is Euclidean projection onto the set \mathcal{X}
- Example: $S_5 = \{2, 3, 1\}$

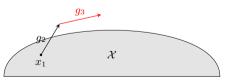


Dual averaging [Nesterov 09]	Delayed dual averaging [H. et al. 22]
$x_t = \Pi_{\mathcal{X}} \left(x_1 - \eta_t \sum_{s=1}^{t-1} g_s \right)$	$x_t = \Pi_{\mathcal{X}} \left(x_1 - \eta_t \sum_{s \in \mathcal{S}_t} g_s \right)$

- $\{g_s : s \in S_t\}$ are the gradients the active agent i(t) can use to compute x_t
- $\Pi_{\mathcal{X}}$ is Euclidean projection onto the set \mathcal{X}
- Example: $S_5 = \{2, 3, 1\}$

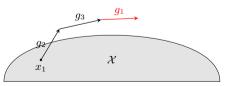
Dual averaging [Nesterov 09]	Delayed dual averaging [H. et al. 22]
$x_t = \Pi_{\mathcal{X}} \left(x_1 - \eta_t \sum_{s=1}^{t-1} g_s \right)$	$x_t = \Pi_{\mathcal{X}} \left(x_1 - \eta_t \sum_{s \in \mathcal{S}_t} g_s \right)$

- $\{g_s : s \in S_t\}$ are the gradients the active agent i(t) can use to compute x_t
- $\Pi_{\mathcal{X}}$ is Euclidean projection onto the set \mathcal{X}
- Example: $S_5 = \{2, 3, 1\}$



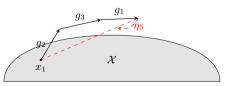
Dual averaging [Nesterov 09]	Delayed dual averaging [H. et al. 22]
$x_t = \Pi_{\mathcal{X}} \left(x_1 - \eta_t \sum_{s=1}^{t-1} g_s \right)$	$x_t = \Pi_{\mathcal{X}} \left(x_1 - \eta_t \sum_{s \in \mathcal{S}_t} g_s \right)$

- $\{g_s: s \in S_t\}$ are the gradients the active agent i(t) can use to compute x_t
- $\Pi_{\mathcal{X}}$ is Euclidean projection onto the set \mathcal{X}
- Example: $S_5 = \{2, 3, 1\}$



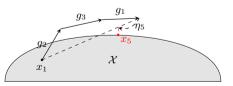
Dual averaging [Nesterov 09]	Delayed dual averaging [H. et al. 22]
$x_t = \Pi_{\mathcal{X}} \left(x_1 - \eta_t \sum_{s=1}^{t-1} g_s \right)$	$x_t = \Pi_{\mathcal{X}} \left(x_1 - \frac{\eta_t}{\eta_t} \sum_{s \in \mathcal{S}_t} g_s \right)$

- $\{g_s: s \in S_t\}$ are the gradients the active agent i(t) can use to compute x_t
- $\Pi_{\mathcal{X}}$ is Euclidean projection onto the set \mathcal{X}
- Example: $S_5 = \{2, 3, 1\}$



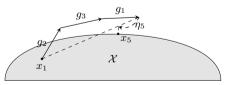
Dual averaging [Nesterov 09]	Delayed dual averaging [H. et al. 22]
$x_t = \Pi_{\mathcal{X}} \left(x_1 - \eta_t \sum_{s=1}^{t-1} g_s \right)$	$x_t = \prod_{\mathcal{X}} \left(x_1 - \eta_t \sum_{s \in \mathcal{S}_t} g_s \right)$

- $\{g_s : s \in S_t\}$ are the gradients the active agent i(t) can use to compute x_t
- $\Pi_{\mathcal{X}}$ is Euclidean projection onto the set \mathcal{X}
- Example: $S_5 = \{2, 3, 1\}$



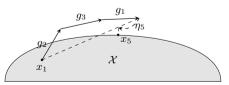
Dual averaging [Nesterov 09]	Delayed dual averaging [H. et al. 22]
$x_t = \Pi_{\mathcal{X}} \left(x_1 - \eta_t \sum_{s=1}^{t-1} g_s \right)$	$x_t = \Pi_{\mathcal{X}} \left(x_1 - \eta_t \sum_{s \in \mathcal{S}_t} g_s \right)$

- $\{g_s : s \in S_t\}$ are the gradients the active agent i(t) can use to compute x_t
- $\Pi_{\mathcal{X}}$ is Euclidean projection onto the set \mathcal{X}
- Example: $S_5 = \{2, 3, 1\}$
- All the gradients have the same weight



Dual averaging [Nesterov 09]	Delayed dual averaging [H. et al. 22]
$x_t = \Pi_{\mathcal{X}} \left(x_1 - \eta_t \sum_{s=1}^{t-1} g_s \right)$	$x_t = \Pi_{\mathcal{X}}\left(x_1 - \eta_t \sum_{s \in \mathcal{S}_t} g_s\right)$

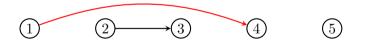
- $\{g_s: s \in S_t\}$ are the gradients the active agent i(t) can use to compute x_t
- $\Pi_{\mathcal{X}}$ is Euclidean projection onto the set \mathcal{X}
- Example: $S_5 = \{2, 3, 1\}$
- All the gradients have the same weight
- Issue: learning rate η_t needs to be non-increasing



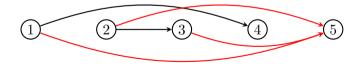
- Dependency graph G: Each vertex is a timestamp, and we put a directed edge from s to t if and only if s ∈ St
- Example: $S_1 = S_2 = \emptyset$; $S_3 = \{2\}$; $S_4 = \{1\}$; $S_5 = \{2, 3, 1\}$

- Dependency graph G: Each vertex is a timestamp, and we put a directed edge from s to t if and only if s ∈ St
- Example: $S_1 = S_2 = \emptyset$; $S_3 = \{2\}$; $S_4 = \{1\}$; $S_5 = \{2, 3, 1\}$

- Dependency graph G: Each vertex is a timestamp, and we put a directed edge from s to t if and only if s ∈ St
- Example: $S_1 = S_2 = \emptyset$; $S_3 = \{2\}$; $S_4 = \{1\}$; $S_5 = \{2, 3, 1\}$



- Dependency graph G: Each vertex is a timestamp, and we put a directed edge from s to t if and only if s ∈ St
- Example: $S_1 = S_2 = \emptyset$; $S_3 = \{2\}$; $S_4 = \{1\}$; $S_5 = \{2, 3, 1\}$



Faithful Permutation

- Faithful permutation: A permutation π of $\{1, 2, ..., T\}$ is faithful if and only if $\pi(1), ..., \pi(T)$ is a topological ordering of \mathcal{G}
- Example: $\{1, 2, 3, 4, 5\}$ and $\{2, 1, 4, 3, 5\}$ are faithful for $S_1 = S_2 = \emptyset$; $S_3 = \{2\}$; $S_4 = \{1\}$; $S_5 = \{2, 3, 1\}$

Template Regret Bound

Theorem [H. et al. 22] Let π be a faithful permutation of $\{1, \ldots, T\}$, and assume that delayed dual averaging is run with η_t satisfying that $\eta_{\pi(t+1)} \leq \eta_{\pi(t)}$ for all t. Then, $\operatorname{Reg}_{T}(p) \leq \frac{\|x_{1} - p\|^{2}}{2\eta_{\pi(T)}} + \frac{1}{2} \sum_{t=1}^{T} \eta_{\pi(t)} \left(\|g_{\pi(t)}\|^{2} + 2\|g_{\pi(t)}\| \sum_{s \in \mathcal{U}^{\pi}} \|g_{s}\| \right).$ From undelayed dual averaging Induced by delays Here $\mathcal{U}_t^{\pi} = \{\pi(1), \ldots, \pi(t)\} \setminus \mathcal{S}_{\pi(t)}$

Template Regret Bound

Theorem [H. et al. 22] Let π be a faithful permutation of $\{1, \ldots, T\}$, and assume that delayed dual averaging is run with η_t satisfying that $\eta_{\pi(t+1)} \leq \eta_{\pi(t)}$ for all t. Then, $\operatorname{Reg}_{T}(p) \leq \frac{\|x_{1} - p\|^{2}}{2\eta_{\pi(T)}} + \frac{1}{2} \sum_{t=1}^{T} \eta_{\pi(t)} \left(\|g_{\pi(t)}\|^{2} + 2\|g_{\pi(t)}\| \sum_{s \in U_{\tau}^{T}} \|g_{s}\| \right).$ From undelayed dual averaging Induced by delays Here $\mathcal{U}_t^{\pi} = \{\pi(1), \ldots, \pi(t)\} \setminus \mathcal{S}_{\pi(t)}$

Q1: What is the optimal regret bound?

Template Regret Bound

Theorem [H. et al. 22] Let π be a faithful permutation of $\{1, \ldots, T\}$, and assume that delayed dual averaging is run with η_t satisfying that $\eta_{\pi(t+1)} \leq \eta_{\pi(t)}$ for all t. Then, $\operatorname{Reg}_{T}(p) \leq \frac{\|x_{1} - p\|^{2}}{2\eta_{\pi(T)}} + \frac{1}{2} \sum_{t=1}^{T} \eta_{\pi(t)} \left(\|g_{\pi(t)}\|^{2} + 2\|g_{\pi(t)}\| \sum_{s \in U^{\pi}} \|g_{s}\| \right).$ From undelayed dual averaging Induced by delays Here $\mathcal{U}_t^{\pi} = \{\pi(1), \ldots, \pi(t)\} \setminus \mathcal{S}_{\pi(t)}$

Q1: What is the optimal regret bound? Q2: How to interpret the additional terms?

Lag and Ideal Regret Bound

The lag with respect to π up to time t is

$$\Lambda_t^{\pi} = \sum_{s=1}^t \left(\|g_{\pi(s)}\|^2 + 2\|g_{\pi(s)}\| \sum_{l \in \mathcal{U}_s^{\pi}} \|g_l\| \right).$$

Corollary

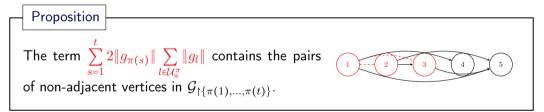
Let π be a faithful permutation of $\{1, \ldots, T\}$, and assume that delayed dual averaging is run with $\eta_{\pi(t)} = 1/\sqrt{\Lambda_T^{\pi}}$ or $\eta_{\pi(t)} = 1/\sqrt{\Lambda_t^{\pi}}$, then the regret is

 $\operatorname{Reg}_T(p) = \mathcal{O}(\sqrt{\Lambda_T^{\pi}})$

Interpretation of Lag

The lag with respect to π up to time t is

$$\Lambda_t^{\pi} = \sum_{s=1}^t \left(\|g_{\pi(s)}\|^2 + 2\|g_{\pi(s)}\| \sum_{l \in \mathcal{U}_s^{\pi}} \|g_l\| \right).$$



Consequences: • $\Lambda_T^{\pi} = \Lambda_T^{id}$ • Lag is both data- and delay-dependent

Regret Bound in the Case of Bounded Delay

The lag with respect to π up to time t is

$$\Lambda_t^{\pi} = \sum_{s=1}^t \left(\|g_{\pi(s)}\|^2 + 2 \|g_{\pi(s)}\| \sum_{l \in \mathcal{U}_s^{\pi}} \|g_l\| \right).$$

Pairs of non-adjacent vertices in $\mathcal{G}_{\uparrow \{\pi(1), \dots, \pi(t)\}}$

- If $||g_t|| \leq G$ and delay is bounded by au, then $\Lambda_t^{\mathrm{id}} \leq (2 au+1)tG^2$
- Setting $\eta_t = 1/\sqrt{\tau t}$ gives $\mathcal{O}(\sqrt{\tau T})$ regret

Similar result in [Weinberger and Ordentlich 02, Langford et al. 09] for constant delay au

Non-Implementability of the Algorithms

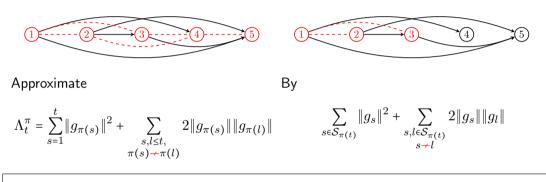
The lag with respect to π up to time t is

$$\Lambda_t^{\pi} = \sum_{s=1}^t \left(\|g_{\pi(s)}\|^2 + 2 \|g_{\pi(s)}\| \sum_{l \in \mathcal{U}_s^{\pi}} \|g_l\| \right).$$

Pairs of non-adjacent vertices in $\mathcal{G}_{\uparrow\{\pi(1),...,\pi(t)\}}$

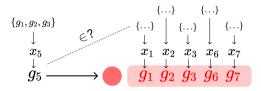
η_{π(t)} = 1/√Λ^π_t: Λ^π_t cannot be computed at time π(t)
η_t = 1/√τt: Even τ and t might be unknown

Adaptive Learning Rate



• $S_5 = \{2, 3, 1\}$ • \checkmark indicates "non-adjacent in the dependency graph"

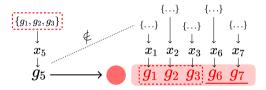
Adaptive Learning Rate: Issues



Two issues:

- Naive implementation of the algorithm requires to identify each gradient, unbounded memory, and high time complexity.
- **2** Is the induced learning rate non-increasing along some faithful permutation?

Adaptive Learning Rate: Assumption



Assumption: When an agent receives g_t , it must have received $\{g_s : s \in S_t\}$

Satisfied if all the gradients are transmitted in order

Adaptive Learning Rate: Pseudo-Code

Algorithm AdaDelay-Dist – from the point of view of agent i

1: Initialize:
$$\mathcal{G}_i \leftarrow \emptyset$$
, $\Gamma^i \leftarrow \beta > 0$, $R > 0$

- 2: while not stopped do
- 3: **asynchronously** receive g_t (along with $\sum_{s \in S_t} ||g_s||$ if sent by other agents)

4:
$$\Gamma^{i} \leftarrow \Gamma^{i} + \|g_{t}\|^{2} + 2\|g_{t}\| (\sum_{s \in \mathcal{G}^{i}} \|g_{s}\| - \sum_{s \in \mathcal{S}_{t}} \|g_{s}\|)$$

5:
$$\mathcal{G}^i \leftarrow \mathcal{G}^i \cup \{g_t\}$$

6: **if** the agent becomes active, i.e.,
$$i(t) = i$$
 then

7:
$$S_t \leftarrow \mathcal{G}_i$$

8: $\eta_t \leftarrow R/\sqrt{\Gamma^i}$
9: Play $x_t = \prod_{\mathcal{X}} \left(x_1 - \eta_t \sum_{s \in S_t} g_s \right)$

10: end if

11: end while

Regret Bound for AdaDelay-Dist

Theorem [H. et al. 22]

Assume that

1 For all t, $||g_t|| \leq G$

- **2** Delays are bounded by τ (possibly unknown)
- **3** When an agent receives g_t , they have already received $\{g_s : s \in S_t\}$

Then, if $||x_1 - p||^2 \le 2R^2$, the algorithm AdaDelay-Dist enjoys the regret bound

$$\operatorname{Reg}_{T}(p) \leq \underbrace{2R\sqrt{\Lambda_{T}}}_{\text{Lag: data- and delay-dependent}} + \underbrace{2R\sqrt{\beta} + \frac{R}{\sqrt{\beta}}G^{2}(2\tau+1)^{2}}_{\text{price of adaptivity}}$$

Regret Bound for AdaDelay-Dist

Theorem [H. et al. 22]

Assume that

1 For all t, $||g_t|| \leq G$

- **2** Delays are bounded by τ (possibly unknown)
- **3** When an agent receives g_t , they have already received $\{g_s : s \in S_t\}$

Then, if $||x_1 - p||^2 \le 2R^2$, the algorithm AdaDelay-Dist enjoys the regret bound

$$\operatorname{Reg}_{T}(p) \leq \underbrace{2R\sqrt{\Lambda_{T}}}_{\text{Lag: data- and delay-dependent}} + \underbrace{2R\sqrt{\beta} + \frac{R}{\sqrt{\beta}}G^{2}(2\tau+1)^{2}}_{\text{price of adaptivity}}$$

Regret Bound for AdaDelay-Dist

Theorem [H. et al. 22]

Assume that

1 For all t, $||g_t|| \leq G$

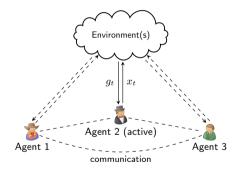
- **2** Delays are bounded by τ (possibly unknown)
- **3** When an agent receives g_t , they have already received $\{g_s : s \in S_t\}$

Then, if $||x_1 - p||^2 \le 2R^2$, the algorithm AdaDelay-Dist enjoys the regret bound

$$\operatorname{Reg}_{T}(p) \leq \underbrace{2R\sqrt{\Lambda_{T}}}_{\text{Lag: data- and delay-dependent}} + \underbrace{2R\sqrt{\beta} + \frac{R}{\sqrt{\beta}}G^{2}(2\tau+1)^{2}}_{\text{price of adaptivity}}$$

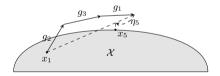
What We Have Seen in This Part

- A framework for decentralized online learning
- Simple algorithm template with data- and delay-adaptive learning rate
- Examined Challenges
 - Asynchronicity and delays
 - Non-stationarity
 - Lack of coordination
 - Adaptive learning



What We Have Seen in This Part

- A framework for decentralized online learning
- Simple algorithm template with data- and delay-adaptive learning rate
- Examined Challenges
 - Asynchronicity and delays
 - Non-stationarity
 - Lack of coordination
 - Adaptive learning



Part II: Adaptive Learning in Continuous Games

Learning in Continuous Games With Gradient Feedback

At each round t = 1, 2, ..., each player $i \in \mathcal{N} \coloneqq \{1, ..., N\}$

- Plays an action $x_{\star}^i \in \mathcal{X}^i$
- Suffers loss $\ell^i(\mathbf{x}_t)$ and receives as feedback $g_t^i \approx \nabla_i \ell^i(\mathbf{x}_t)$

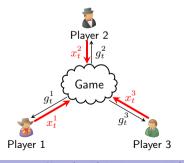
- Each player i has a convex closed action set \mathcal{X}^i and a loss function $\ell^i: \mathcal{X}^1 \times \dots \times \mathcal{X}^N \to \mathbb{R}$
- Joint action of all players $\mathbf{x} = (x^i)_{i \in \mathcal{N}} = (x^i, \mathbf{x}^{-i})$

Learning in Continuous Games With Gradient Feedback

At each round $t = 1, 2, \dots$, each player $i \in \mathcal{N} \coloneqq \{1, \dots, N\}$

- Plays an action $x_t^i \in \mathcal{X}^i$
- Suffers loss $\ell^i(\mathbf{x}_t)$ and receives as feedback $g^i_t \approx
 abla_i \, \ell^i(\mathbf{x}_t)$

- Each player *i* has a convex closed action set \mathcal{X}^i and a loss function $\ell^i: \mathcal{X}^1 \times \ldots \times \mathcal{X}^N \to \mathbb{R}$
- Joint action of all players $\mathbf{x} = (x^i)_{i \in \mathcal{N}} = (x^i, \mathbf{x}^{-i})$



Learning in Continuous Games With Gradient Feedback

At each round t = 1, 2, ..., each player $i \in \mathcal{N} \coloneqq \{1, ..., N\}$

- Plays an action $x_{\star}^i \in \mathcal{X}^i$
- Suffers loss $\ell^i(\mathbf{x}_t)$ and receives as feedback $q_t^i \approx \nabla_i \ell^i(\mathbf{x}_t)$

- Each player i has a convex closed action set \mathcal{X}^i and a loss function $\ell^i: \mathcal{X}^1 \times \dots \times \mathcal{X}^N \to \mathbb{R}$
- Joint action of all players $\mathbf{x} = (x^i)_{i \in \mathcal{N}} = (x^i, \mathbf{x}^{-i})$

Learning in Continuous Games With Gradient Feedback

At each round t = 1, 2, ..., each player $i \in \mathcal{N} \coloneqq \{1, ..., N\}$

- Plays an action $x_{\star}^i \in \mathcal{X}^i$
- Suffers loss $\ell^i(\mathbf{x}_t)$ and receives as feedback $g_t^i \approx \nabla_i \ell^i(\mathbf{x}_t)$

- Each player i has a convex closed action set \mathcal{X}^i and a loss function $\ell^i: \mathcal{X}^1 \times \dots \times \mathcal{X}^N \to \mathbb{R}$
- Joint action of all players $\mathbf{x} = (x^i)_{i \in \mathcal{M}} = (x^i, \mathbf{x}^{-i})$
- $\ell^i(\cdot, \mathbf{x}^{-i})$ is convex and $\nabla_i \ell^i(\mathbf{x}_t)$ is Lipschitz continuous

Evaluating Learning-in-Games Algorithms

Two interaction scenarios

- Adversarial: the actions of the other players are arbitrary
- Self-play: all the players use the same algorithm

Two evaluation criteria

• Regret of player i with respect to $p^i \in \mathcal{X}^i$ is

$$\operatorname{Reg}_{T}^{i}(p^{i}) = \sum_{t=1}^{T} \left(\underbrace{\ell^{i}(x_{t}^{i}, \mathbf{x}_{t}^{-i}) - \ell^{i}(p^{i}, \mathbf{x}_{t}^{-i})}_{\operatorname{cost} \text{ of not playing } p^{i} \text{ in round } t \right) \qquad [i.e. \ \ell_{t} = \ell^{i}(\cdot, \mathbf{x}_{t}^{-i})]$$

• Whether the sequence of play \mathbf{x}_t converges to a Nash equilibrium \mathbf{x}_\star

Evaluating Learning-in-Games Algorithms

Two interaction scenarios

- Adversarial: the actions of the other players are arbitrary
- Self-play: all the players use the same algorithm

Two evaluation criteria

• Regret of player i with respect to $p^i \in \mathcal{X}^i$ is

$$\operatorname{Reg}_{T}^{i}(p^{i}) = \sum_{t=1}^{T} \left(\underbrace{\ell^{i}(x_{t}^{i}, \mathbf{x}_{t}^{-i}) - \ell^{i}(p^{i}, \mathbf{x}_{t}^{-i})}_{\operatorname{cost} \text{ of not playing } p^{i} \text{ in round } t \right) \qquad [i.e. \ \ell_{t} = \ell^{i}(\cdot, \mathbf{x}_{t}^{-i})]$$

• Whether the sequence of play \mathbf{x}_t converges to a Nash equilibrium \mathbf{x}_\star

Evaluating Learning-in-Games Algorithms

Two interaction scenarios

- Adversarial: the actions of the other players are arbitrary
- Self-play: all the players use the same algorithm

Two evaluation criteria

• Regret of player i with respect to $p^i \in \mathcal{X}^i$ is

$$\operatorname{Reg}_{T}^{i}(p^{i}) = \sum_{t=1}^{T} \left(\underbrace{\ell^{i}(x_{t}^{i}, \mathbf{x}_{t}^{-i}) - \ell^{i}(p^{i}, \mathbf{x}_{t}^{-i})}_{\operatorname{cost of not playing } p^{i} \text{ in round } t \right) \qquad [i.e. \ \ell_{t} = \ell^{i}(\cdot, \mathbf{x}_{t}^{-i})]$$

• Whether the sequence of play x_t converges to a Nash equilibrium x_*

Variational Stability for Convergence to Nash Equilibrium

A continuous convex game is variationally stable (VS) if the set \mathcal{X}_{\star} of Nash equilibria of the game is nonempty and

$$\langle \mathbf{V}(\mathbf{x}), \mathbf{x} - \mathbf{x}_{\star} \rangle = \sum_{i=1}^{N} \langle \nabla_{i} \ell^{i}(\mathbf{x}), x^{i} - x_{\star}^{i} \rangle \ge 0 \text{ for all } \mathbf{x} \in \mathcal{X}, \mathbf{x}_{\star} \in \mathcal{X}_{\star}$$

- Finding Nash Equilibrium is hard [Daskalakis et al. 08]
- Game vector field / Psudeo-gradient

$$\mathbf{V} = (\nabla_1 \, \ell^1, \dots, \nabla_N \, \ell^N)$$

• \mathbf{V} monotone \Rightarrow VS satisfied

Variational Stability for Convergence to Nash Equilibrium

A continuous convex game is variationally stable (VS) if the set \mathcal{X}_{\star} of Nash equilibria of the game is nonempty and

$$\langle \mathbf{V}(\mathbf{x}), \mathbf{x} - \mathbf{x}_{\star} \rangle = \sum_{i=1}^{N} \langle \nabla_{i} \ell^{i}(\mathbf{x}), x^{i} - x_{\star}^{i} \rangle \ge 0 \text{ for all } \mathbf{x} \in \mathcal{X}, \mathbf{x}_{\star} \in \mathcal{X}_{\star}$$

- Finding Nash Equilibrium is hard [Daskalakis et al. 08]
- Game vector field / Psudeo-gradient

$$\mathbf{V} = (\nabla_1 \, \ell^1, \dots, \nabla_N \, \ell^N)$$

• \mathbf{V} monotone \Rightarrow VS satisfied

Variational Stability for Convergence to Nash Equilibrium

A continuous convex game is variationally stable (VS) if the set \mathcal{X}_{\star} of Nash equilibria of the game is nonempty and

$$\langle \mathbf{V}(\mathbf{x}), \mathbf{x} - \mathbf{x}_{\star} \rangle = \sum_{i=1}^{N} \langle \nabla_{i} \ell^{i}(\mathbf{x}), x^{i} - x_{\star}^{i} \rangle \ge 0 \text{ for all } \mathbf{x} \in \mathcal{X}, \mathbf{x}_{\star} \in \mathcal{X}_{\star}$$

- Finding Nash Equilibrium is hard [Daskalakis et al. 08]
- Game vector field / Psudeo-gradient

$$\mathbf{V} = (\nabla_1 \, \ell^1, \dots, \nabla_N \, \ell^N)$$

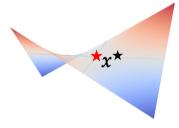
• V monotone \Rightarrow VS satisfied

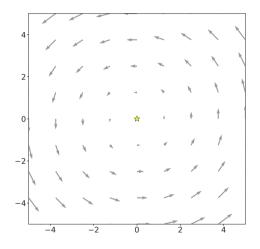
Failure of the Vanilla Gradient Method in Bilinear Games

• Two-player planar bilinear zero-sum game

$$\ell^1(\mathbf{x}) = -\ell^2(\mathbf{x}) = \theta\phi \ [\mathbf{x} = (\theta, \phi) \in \mathbb{R}^2]$$

Unique Nash equilibrium: (0,0)





Failure of the Vanilla Gradient Method in Bilinear Games

• Two-player planar bilinear zero-sum game

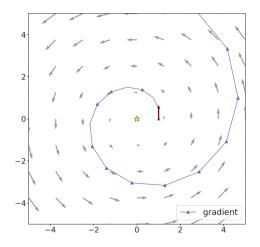
$$\ell^{1}(\mathbf{x}) = -\ell^{2}(\mathbf{x}) = \theta\phi \ [\mathbf{x} = (\theta, \phi) \in \mathbb{R}^{2}]$$

• Game vector field

$$\mathbf{V}(\mathbf{x}) = (\nabla_{\theta} \, \ell^1(\mathbf{x}), \nabla_{\phi} \, \ell^2(\mathbf{x})) = (\phi, -\theta)$$

• Gradient descent

$$\mathbf{X}_{t+1} = \mathbf{X}_t - \eta_t \mathbf{V}(\mathbf{X}_t)$$



Optimistic Gradient to the Rescue

• Two-player planar bilinear zero-sum game

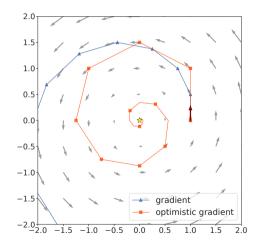
$$\ell^1(\mathbf{x}) = -\ell^2(\mathbf{x}) = \theta \phi \ [\mathbf{x} = (\theta, \phi) \in \mathbb{R}^2]$$

• Game vector field

$$\mathbf{V}(\mathbf{x}) = (\nabla_{\theta} \, \ell^1(\mathbf{x}), \nabla_{\phi} \, \ell^2(\mathbf{x})) = (\phi, -\theta)$$

• Optimistic gradient descent [Popov 80]

$$\mathbf{X}_{t+\frac{1}{2}} = \mathbf{X}_t - \eta_t \mathbf{V}(\mathbf{X}_{t-\frac{1}{2}})$$
$$\mathbf{X}_{t+1} = \mathbf{X}_t - \eta_{t+1} \mathbf{V}(\mathbf{X}_{t+\frac{1}{2}})$$



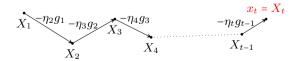
Optimistic Gradient in Purely Online Setup

$$X_{t+1} = \Pi_{\mathcal{X}}(X_t - \eta_{t+1}g_t)$$

Online gradient descent: $x_t = X_t$

$$\operatorname{Reg}_{T}(p) = \mathcal{O}\left(\sqrt{\sum_{t=1}^{T} \|g_{t}\|^{2}}\right) = \mathcal{O}(\sqrt{T}) \qquad [\operatorname{Zinkevich} \ 03]$$

Optimal in the worst case



Optimistic Gradient in Purely Online Setup

$$X_{t+1} = \Pi_{\mathcal{X}}(X_t - \eta_{t+1}g_t)$$

A conceptual algorithm: $x_t = X_{t+1} = \prod_{\mathcal{X}} (X_t - \eta_{t+1}g_t)$

 $\operatorname{Reg}_T(p) = \mathcal{O}(1)$

This strategy is not implementable as it requires to know g_t before playing x_t

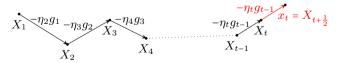
Optimistic Gradient in Purely Online Setup

$$X_{t+1} = \Pi_{\mathcal{X}}(X_t - \eta_{t+1}g_t)$$

Optimistic gradient descent: $x_t = \prod_{\mathcal{X}} (X_t - \eta_t g_{t-1})$

$$\operatorname{Reg}_{T}(p) = \mathcal{O}\left(\sqrt{\sum_{t=1}^{T} \|g_{t} - g_{t-1}\|^{2}}\right)$$
 [Chiang et al. 12]

We are optimistic because we expect g_{t-1} to be close to g_t



Contributions for Part II

- Adaptive algorithm
- Robustness against noise
- Sublinear regret against adversarial opponents
- Constant regret in self-play
- Convergence to Nash Equilibrium in self-play
- Convergence rates under error bound condition
- Local convergence results

In this defense

- 1. H., lutzeler, Malick, and Mertikopoulos. *Explore Aggressively, Update Conservatively: Stochastic Extragradient Methods with Variable Stepsize Scaling.* NeurIPS, 2020.
- 2. H., Antonakopoulos, Mertikopoulos. Adaptive Learning in Continuous Games: Optimal Regret Bounds and Convergence to Nash Equilibrium. COLT, 2021.
- 3. H., Antonakopoulos, Cevher, Mertikopoulos. *No-Regret Learning in Games with Noisy Feedback: Faster Rates and Adaptivity via Learning Rate Separation*. NeurIPS, 2022.

Contributions for Part II: Case of Perfect Feedback

- Adaptive algorithm
- Robustness against noise
- Sublinear regret against adversarial opponents
- Constant regret in self-play
- Convergence to Nash Equilibrium in self-play
- Convergence rates under error bound condition
- Local convergence results

In this defense

1. H., lutzeler, Malick, and Mertikopoulos. *Explore Aggressively, Update Conservatively: Stochastic Extragradient Methods with Variable Stepsize Scaling.* NeurIPS, 2020.

2. H., Antonakopoulos, Mertikopoulos. Adaptive Learning in Continuous Games: Optimal Regret Bounds and Convergence to Nash Equilibrium. COLT, 2021.

3. H., Antonakopoulos, Cevher, Mertikopoulos. *No-Regret Learning in Games with Noisy Feedback: Faster Rates and Adaptivity via Learning Rate Separation*. NeurIPS, 2022.

All the favorable guarantees break if learning rates are not properly tuned

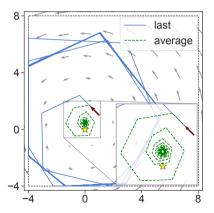
• Two-player planar bilinear zero-sum game

$$\ell^1(\mathbf{x}) = -\ell^2(\mathbf{x}) = \theta \phi$$
 where $\mathcal{X}^1 = \mathcal{X}^2 = [-4, 8]$

• The two players play optimistic gradient with constant $\eta = 0.7$ and T = 100

Problem

Convergence only holds for small enough η



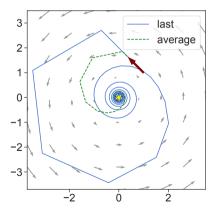
All the favorable guarantees break if learning rates are not properly tuned

• Two-player planar bilinear zero-sum game

$$\ell^1(\mathbf{x}) = -\ell^2(\mathbf{x}) = \theta \phi$$
 where $\mathcal{X}^1 = \mathcal{X}^2 = [-4, 8]$

• The two players play optimistic gradient with decreasing $\eta_t = 1/\sqrt{t}$ and T = 100

$$\eta_t \propto 1/\sqrt{t} \rightarrow \text{slow convergence}$$



All the favorable guarantees break if learning rates are not properly tuned

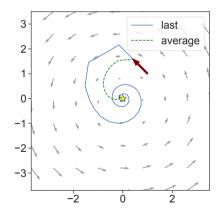
• Two-player planar bilinear zero-sum game

$$\ell^1(\mathbf{x}) = -\ell^2(\mathbf{x}) = heta\phi$$
 where $\mathcal{X}^1 = \mathcal{X}^2 = [-4, 8]$

• The two players play optimistic gradient with adaptive η_t and T = 100

Solution

Adaptive learning rate



$$\sum_{t=1}^{T} \langle g_t^i, X_{t+\frac{1}{2}}^i - p^i \rangle \leq \frac{h^i(p^i) - \min h^i}{\eta_{T+1}^i} + \sum_{t=1}^{T} \left[\frac{\eta_t^i \|g_t^i - g_{t-1}^i\|^2}{\eta_t^i \|g_t^i - g_{t-1}^i\|^2} - \sum_{t=2}^{T} \frac{1}{8\eta_{t-1}^i} \|X_{t+\frac{1}{2}}^i - X_{t-\frac{1}{2}}^i\|^2 \right]$$

Take the adaptive learning rate

$$\eta_t^i = \frac{1}{\sqrt{\tau^i + \sum_{s=1}^{t-1} \|g_t^i - g_{t-1}^i\|^2}}$$
(Adapt)

- $\tau^i > 0$ can be chosen freely by the player
- η^i_t is thus computed solely based on local information available to each player

Theoretical Guarantees

Theorem [H. et al. 21]

Assume that player i runs OptDA with learning rate (Adapt), we have the following guarantees under different situations:

1 [Adversarial] Player *i*'s regret is bounded as

$$\mathcal{O}\left(\sqrt{\sum_{t=1}^{T} \|g_t^i - g_{t-1}^i\|^2}\right)$$

 [Self-play] All the players have constant regret and the trajectory of play converges to Nash equilibrium if the game is variationally stable.

Theoretical Guarantees

Theorem [H. et al. 21]

Assume that player i runs OptDA with learning rate (Adapt), we have the following guarantees under different situations:

1 [Adversarial] Player *i*'s regret is bounded as

$$\mathcal{O}\left(\sqrt{\sum\limits_{t=1}^T \lVert g_t^i - g_{t-1}^i \rVert^2}
ight)$$

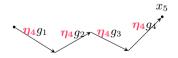
2 [Self-play] All the players have constant regret and the trajectory of play converges to Nash equilibrium if the game is variationally stable.

Optimistic gradient descent [Popov 80]

$$\begin{aligned} X_{t+\frac{1}{2}}^i &= \Pi_{\mathcal{X}} (X_t^i - \eta_t^i g_{t-1}^i) \\ X_{t+1}^i &= \Pi_{\mathcal{X}} (X_t^i - \eta_{t+1}^i g_t^i) \end{aligned}$$

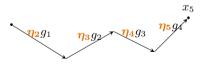
Optimistic dual averaging [Song et al. 20]

$$\begin{split} X^{i}_{t+\frac{1}{2}} &= \Pi_{\mathcal{X}} (X^{i}_{t} - \eta^{i}_{t} g^{i}_{t-1}) \\ X^{i}_{t+1} &= \Pi_{\mathcal{X}} (X^{i}_{1} - \eta^{i}_{t+1} \sum_{s=1}^{t} g^{i}_{s}) \end{split}$$



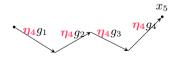
Optimistic gradient descent [Popov 80]

$$\rightarrow X^i_{t+\frac{1}{2}} = \Pi_{\mathcal{X}}(X^i_t - \eta^i_t g^i_{t-1})$$
$$X^i_{t+1} = \Pi_{\mathcal{X}}(X^i_t - \eta^i_{t+1} g^i_t)$$



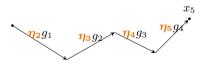
Optimistic dual averaging [Song et al. 20]

$$\begin{array}{l} \rightarrow X^i_{t+\frac{1}{2}} = \Pi_{\mathcal{X}}(X^i_t - \eta^i_t g^i_{t-1}) \\ \\ X^i_{t+1} = \Pi_{\mathcal{X}}(X^i_1 - \eta^i_{t+1} \sum_{s=1}^t g^i_s) \end{array}$$



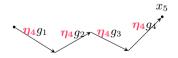
Optimistic gradient descent [Popov 80]

$$\begin{split} X^i_{t+\frac{1}{2}} &= \Pi_{\mathcal{X}}(X^i_t - \eta^i_t g^i_{t-1}) \\ \rightarrow X^i_{t+1} &= \Pi_{\mathcal{X}}(X^i_t - \eta^i_{t+1} g^i_t) \end{split}$$



Optimistic dual averaging [Song et al. 20]

$$\begin{split} X_{t+\frac{1}{2}}^{i} &= \Pi_{\mathcal{X}} (X_{t}^{i} - \eta_{t}^{i} g_{t-1}^{i}) \\ X_{t+1}^{i} &= \Pi_{\mathcal{X}} (X_{1}^{i} - \eta_{t+1}^{i} \sum_{s=1}^{t} g_{s}^{i}) \end{split}$$

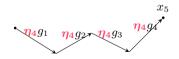


Optimistic gradient descent [Popov 80]

$$\begin{aligned} X_{t+\frac{1}{2}}^i &= \Pi_{\mathcal{X}} (X_t^i - \eta_t^i g_{t-1}^i) \\ X_{t+1}^i &= \Pi_{\mathcal{X}} (X_t^i - \eta_{t+1}^i g_t^i) \end{aligned}$$

Optimistic dual averaging [Song et al. 20]

$$\begin{split} X^i_{t+\frac{1}{2}} &= \Pi_{\mathcal{X}} (X^i_t - \eta^i_t g^i_{t-1}) \\ \rightarrow X^i_{t+1} &= \Pi_{\mathcal{X}} (X^i_1 - \eta^i_{t+1} \sum_{s=1}^t g^i_s) \end{split}$$



Contributions for Part II: What We Have Seen

- Adaptive algorithm
- Robustness against noise
- Sublinear regret against adversarial opponents
- Constant regret in self-play
- Convergence to Nash Equilibrium in self-play
- Convergence rates under error bound condition
- Local convergence results

In this defense

- 1. H., lutzeler, Malick, and Mertikopoulos. *Explore Aggressively, Update Conservatively: Stochastic Extragradient Methods with Variable Stepsize Scaling.* NeurIPS, 2020.
- 2. H., Antonakopoulos, Mertikopoulos. Adaptive Learning in Continuous Games: Optimal Regret Bounds and Convergence to Nash Equilibrium. COLT, 2021.
- 3. H., Antonakopoulos, Cevher, Mertikopoulos. *No-Regret Learning in Games with Noisy Feedback: Faster Rates and Adaptivity via Learning Rate Separation*. NeurIPS, 2022.

Contributions for Part II: What Comes Next

- Adaptive algorithm
- Robustness against noise
- Sublinear regret against adversarial opponents
- Constant regret in self-play under multiplicative noise
- Convergence to Nash Equilibrium in self-play
- Convergence rates under error bound condition
- Local convergence results

In this defense

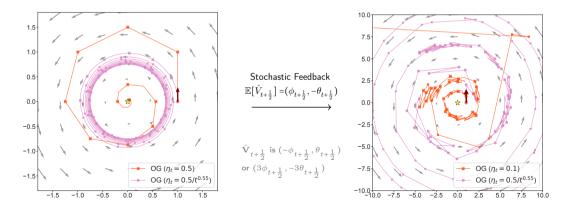
1. H., lutzeler, Malick, and Mertikopoulos. *Explore Aggressively, Update Conservatively: Stochastic Extragradient Methods with Variable Stepsize Scaling.* NeurIPS, 2020.

2. H., Antonakopoulos, Mertikopoulos. Adaptive Learning in Continuous Games: Optimal Regret Bounds and Convergence to Nash Equilibrium. COLT, 2021.

3. H., Antonakopoulos, Cevher, Mertikopoulos. *No-Regret Learning in Games with Noisy Feedback: Faster Rates and Adaptivity via Learning Rate Separation*. NeurIPS, 2022.

Stochasticity Breaks Optimistic Gradient

All the favorable guarantees break if feedback is stochastic

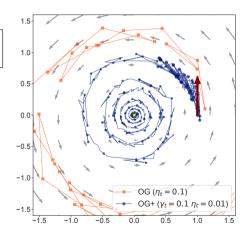


Toward Robustness Against Noise: Learning Rate Separation

Problem: Noise present in the two steps

• OG+ $[\mathbf{x}_t = \mathbf{X}_{t+\frac{1}{2}}]$ $\mathbf{X}_{t+\frac{1}{2}} = \mathbf{X}_t - \gamma_t \hat{\mathbf{V}}_{t-\frac{1}{2}}$ $\mathbf{X}_{t+1} = \mathbf{X}_t - \eta_t \hat{\mathbf{V}}_{t+\frac{1}{2}}$ With $\gamma_t \ge \eta_t$

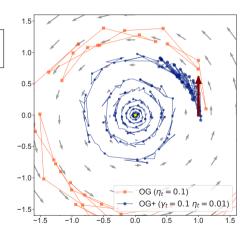
• Similar to mini-batching of the update step



Toward Robustness Against Noise: Learning Rate Separation

Problem: Noise present in the two steps

- OG+ $[\mathbf{x}_t = \mathbf{X}_{t+\frac{1}{2}}]$ $\mathbf{X}_{t+\frac{1}{2}} = \mathbf{X}_t - \underline{\gamma_t} \hat{\mathbf{V}}_{t-\frac{1}{2}}$ $\mathbf{X}_{t+1} = \mathbf{X}_t - \eta_t \hat{\mathbf{V}}_{t+\frac{1}{2}}$ With $\gamma_t \ge \eta_t$
- Similar to mini-batching of the update step

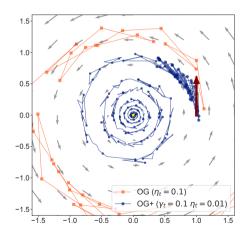


Toward Robustness Against Noise: Learning Rate Separation

• OG+ is guaranteed to converge to Nash equilibrium under VS if

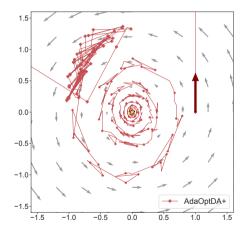
$$\sum_{t=1}^{+\infty} \gamma_t \eta_{t+1} = +\infty,$$
$$\sum_{t=1}^{+\infty} \gamma_t^2 \eta_{t+1} < +\infty, \quad \sum_{t=1}^{+\infty} \eta_t^2 < +\infty$$

• We can take constant learning rates if the noise is multiplicative



Toward Robustness Against Noise: Adaptive Learning Rates

$$\gamma_t^i = \frac{1}{\left(1 + \sum_{s=1}^{t-2} \|g_s^i\|^2\right)^{\frac{1}{4}}}$$
$$\eta_t^i = \frac{1}{\sqrt{1 + \sum_{s=1}^{t-2} \left(\|g_s^i\|^2 + \|X_s^i - X_{s+1}^i\|^2\right)}}$$



Stochastic Oracle

- We focus on the unconstrained setup $\mathcal{X}^i = \mathbb{R}^{d^i}$
- Stochastic feedback g_t^i = $\nabla_i \ell^i(\mathbf{x}_t) + \xi_t^i$ with noise satisfying
 - **1** Zero-mean: $\mathbb{E}_t[\xi_t^i] = 0$
 - 2 Variance control: $\mathbb{E}_t[\|\xi_t^i\|^2] \le \sigma_{\mathsf{add}}^2 + \sigma_{\mathsf{mult}}^2 \|\nabla_i \ell^i(\mathbf{x}_t)\|^2$
- We say that the noise is multiplicative if σ²_{add} = 0
 Examples: Randomized coordinate descent
 - Finite sum of operators whose solution sets intersect

Theoretical Guarantees for Learning with Noisy Feedback: OG

		Adversarial	Self-Play + Variational Stability		
		Bounded feedback	-	-	Strongly M
	Noise	Reg_t	Reg_t	Cvg?	$\operatorname{dist}(\mathbf{X}_t, \mathcal{X}_\star)$
OG	-	\sqrt{t}	\sqrt{t}	×	$1/\sqrt{t}$
		[Chiang et al. 12]	[Gidel et al. 19]	[H. et al. 20]	[H. et al. 19]

Theoretical Guarantees for Learning with Noisy Feedback [H. et al. 22]

		Adversarial	Self-Play + Variational Stability			
	Noise	Bounded feedback Reg_t	$ \operatorname{Reg}_t$	- Cvg?	Strongly M $\operatorname{dist}(\mathbf{X}_t, \mathcal{X}_\star)$	Error bound $\operatorname{dist}(\mathbf{X}_t, \mathcal{X}_\star)$
OG+	- Mul.	\sqrt{t}	\sqrt{t} 1	\ \	$\frac{1/\sqrt{t}}{e^{-\rho t}}$	$\frac{1/t^{1/6}}{e^{-\rho t}}$
OptDA+	- Mul.	\sqrt{t}	\sqrt{t} 1	-	$1/\sqrt{t}$	$1/t^{1/6}$ -
AdaOptDA+	- Mul.	$t^{3/4}$	$\frac{\sqrt{t}}{1}$	-	-	-

Theoretical Guarantees With Unknown Time Horizon [H. et al. 22]

		Adversarial	Self-Play + Variational Stability			
	Noise	Bounded feedback Reg_t	$\overline{\operatorname{Reg}_t}$	- Cvg?	$\begin{array}{l} Strongly \ M \\ dist(\mathbf{X}_t, \mathcal{X}_\star) \end{array}$	Error bound $\operatorname{dist}(\mathbf{X}_t, \mathcal{X}_\star)$
OG+	- Mul.	×	$\frac{\sqrt{t}}{1}$	\ \	$\frac{1/\sqrt{t}}{e^{-\rho t}}$	$\frac{1/t^{1/6}}{e^{-\rho t}}$
OptDA+	- Mul.	\sqrt{t}	\sqrt{t} 1	-	-	-
AdaOptDA+	- Mul.	$t^{3/4}$	$\frac{\sqrt{t}}{1}$	-	-	-

Theoretical Guarantees With Unknown Time Horizon [H. et al. 22]

		Adversarial	Self-Play + Variational Stability			
	Noise	Bounded feedback Reg_t	$\overline{\operatorname{Reg}_t}$	- Cvg?	Strongly M $\operatorname{dist}(\mathbf{X}_t, \mathcal{X}_\star)$	Error bound $\operatorname{dist}(\mathbf{X}_t, \mathcal{X}_\star)$
OG+	- Mul.	×	$\frac{\sqrt{t}}{1}$	\ \	$\frac{1/\sqrt{t}}{e^{-\rho t}}$	$\frac{1/t^{1/6}}{e^{-\rho t}}$
OptDA+	- Mul.	\sqrt{t}	$\frac{\sqrt{t}}{1}$	-	-	-
AdaOptDA+	- Mul.	$t^{3/4}$	\sqrt{t} 1	-	-	-

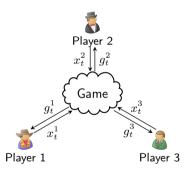
46 / 51

Theoretical Guarantees With Unknown Time Horizon [H. et al. 22]

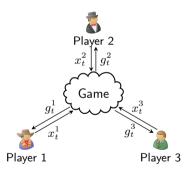
		Adversarial	Self-Play + Variational Stability			
	Noise	Bounded feedback Reg_t	$\overline{\operatorname{Reg}_t}$	- Cvg?	$\begin{array}{l} Strongly \ M \\ dist(\mathbf{X}_t, \mathcal{X}_\star) \end{array}$	Error bound $\operatorname{dist}(\mathbf{X}_t, \mathcal{X}_\star)$
OG+	- Mul.	×	\sqrt{t} 1	\ \	$\frac{1/\sqrt{t}}{e^{-\rho t}}$	$\frac{1/t^{1/6}}{e^{-\rho t}}$
OptDA+	- Mul.	\sqrt{t}	\sqrt{t} 1	-	-	-
AdaOptDA+	- Mul.	$t^{3/4}$	\sqrt{t} 1	-	-	-

46 / 51

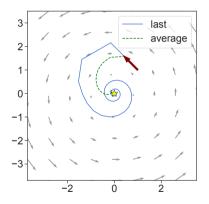
- Learning-in-game algorithms run individually without knowledge about the game
- Nearly optimal guarantees in different situations, potentially under noisy feedback
- Examined Challenges
 - Conflicting interests
 - Non-stationarity
 - Lack of coordination
 - Adaptive learning
 - Uncertainty



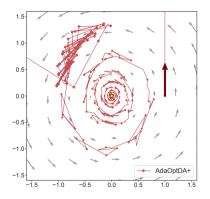
- Learning-in-game algorithms run individually without knowledge about the game
- Nearly optimal guarantees in different situations, potentially under noisy feedback
- Examined Challenges
 - Conflicting interests
 - Non-stationarity
 - Lack of coordination
 - Adaptive learning
 - Uncertainty



- Learning-in-game algorithms run individually without knowledge about the game
- Nearly optimal guarantees in different situations, potentially under noisy feedback
- Examined Challenges
 - Conflicting interests
 - Non-stationarity
 - Lack of coordination
 - Adaptive learning
 - Uncertainty



- Learning-in-game algorithms run individually without knowledge about the game
- Nearly optimal guarantees in different situations, potentially under noisy feedback
- Examined Challenges
 - Conflicting interests
 - Non-stationarity
 - Lack of coordination
 - Adaptive learning
 - Uncertainty



Better understanding of the algorithms

- Guarantees for broader family of algorithms as in no-regret [Sorin 23]
- Other guarantees: Policy regret [Arora et al. 12], dynamic regret [Zinkevich 03]

• Different setups

- Bandit [Cesa-Bianchi et al. 19, Tatarenko and Kamgarpour 18]
- Non-convex games [Daskalakis 22]
- Stochastic games [Shapley 53]

49 / 51

Better understanding of the algorithms

- Guarantees for broader family of algorithms as in no-regret [Sorin 23]
- Other guarantees: Policy regret [Arora et al. 12], dynamic regret [Zinkevich 03]

• Different setups

- Bandit [Cesa-Bianchi et al. 19, Tatarenko and Kamgarpour 18]
- Non-convex games [Daskalakis 22]
- Stochastic games [Shapley 53]

Better understanding of the algorithms

- Guarantees for broader family of algorithms as in no-regret [Sorin 23]
- Other guarantees: Policy regret [Arora et al. 12], dynamic regret [Zinkevich 03]

Different setups

- Bandit [Cesa-Bianchi et al. 19, Tatarenko and Kamgarpour 18]
- Non-convex games [Daskalakis 22]
- Stochastic games [Shapley 53]

49 / 51

Better understanding of the algorithms

- Guarantees for broader family of algorithms as in no-regret [Sorin 23]
- Other guarantees: Policy regret [Arora et al. 12], dynamic regret [Zinkevich 03]

• Different setups

- Bandit [Cesa-Bianchi et al. 19, Tatarenko and Kamgarpour 18]
- Non-convex games [Daskalakis 22]
- Stochastic games [Shapley 53]

49 / 51

Better understanding of the algorithms

- Guarantees for broader family of algorithms as in no-regret [Sorin 23]
- Other guarantees: Policy regret [Arora et al. 12], dynamic regret [Zinkevich 03]

Different setups

- Bandit [Cesa-Bianchi et al. 19, Tatarenko and Kamgarpour 18]
- Non-convex games [Daskalakis 22]
- Stochastic games [Shapley 53]

Better understanding of the algorithms

- Guarantees for broader family of algorithms as in no-regret [Sorin 23]
- Other guarantees: Policy regret [Arora et al. 12], dynamic regret [Zinkevich 03]

• Different setups

- Bandit [Cesa-Bianchi et al. 19, Tatarenko and Kamgarpour 18]
- Non-convex games [Daskalakis 22]
- Stochastic games [Shapley 53]

Better understanding of the algorithms

- Guarantees for broader family of algorithms as in no-regret [Sorin 23]
- Other guarantees: Policy regret [Arora et al. 12], dynamic regret [Zinkevich 03]

• Different setups

- Bandit [Cesa-Bianchi et al. 19, Tatarenko and Kamgarpour 18]
- Non-convex games [Daskalakis 22]
- Stochastic games [Shapley 53]

- Evaluation and alignment of generative models with preference-based feedback
 - Dueling bandit and learning in two-player zero-sum finite games [Ailon et al. 14]
 - ▶ RLHF and learning in stochastic games [Wang et al. 23]
- One big model or many small models

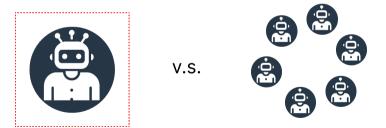


- Evaluation and alignment of generative models with preference-based feedback
 - Dueling bandit and learning in two-player zero-sum finite games [Ailon et al. 14]
 - ▶ RLHF and learning in stochastic games [Wang et al. 23]
- One big model or many small models



- Evaluation and alignment of generative models with preference-based feedback
 - Dueling bandit and learning in two-player zero-sum finite games [Ailon et al. 14]
 - RLHF and learning in stochastic games [Wang et al. 23]
- One big model or many small models

- Evaluation and alignment of generative models with preference-based feedback
 - Dueling bandit and learning in two-player zero-sum finite games [Ailon et al. 14]
 - RLHF and learning in stochastic games [Wang et al. 23]
- One big model or many small models



- Evaluation and alignment of generative models with preference-based feedback
 - Dueling bandit and learning in two-player zero-sum finite games [Ailon et al. 14]
 - ▶ RLHF and learning in stochastic games [Wang et al. 23]
- One big model or many small models

V.S.

My Publications

- Shin-Ying Yeh, Y. H., Zhidong Gao, Bernard B W Yang, Giyeong Oh, and Yanmin Gong. Navigating Text-To-Image Customization: From LyCORIS Fine-Tuning to Model Evaluation. Submitted to ICLR, 2023.
- [2] Y. H., Shiva Kasiviswanathan, Branislav Kveton, and Patrick Bloebaum. *Thompson Sampling with Diffusion Generative Prior*. In ICML, 2023.
- [3] Y. H., Yassine Laguel, Franck lutzeler, and Jérôme Malick. Push-Pull with Device Sampling. TACON, 2023.
- [4] Y. H., Kimon Antonakopoulos, Volkan Cevher, and Panayotis Mertikopoulos. No-Regret Learning in Games with Noisy Feedback: Faster Rates and Adaptivity via Learning Rate Separation. In NeurIPS, 2022.
- [5] Y. H., Shiva Kasiviswanathan, and Branislav Kveton. Uplifting Bandits. In NeurIPS, 2022.
- [6] Y. H., Franck lutzeler, Jérôme Malick, and Panayotis Mertikopoulos. *Multi-agent Online Optimization with Delays:* Asynchronicity, Adaptivity, and Optimism. JMLR, 2022.
- [7] Y. H., Franck lutzeler, Jérôme Malick, and Panayotis Mertikopoulos. Optimization in Open Networks via Dual Averaging. In CDC, 2021.
- [8] Y. H., Kimon Antonakopoulos, and Panayotis Mertikopoulos. Adaptive Learning in Continuous Games: Optimal Regret Bounds and Convergence to Nash Equilibrium. In COLT, 2021.
- Y. H., Franck lutzeler, Jérôme Malick, and Panayotis Mertikopoulos. Explore Aggressively, Update Conservatively: Stochastic Extragradient Methods with Variable Stepsize Scaling. In NeurIPS, 2020.
- [10] Y. H., Franck lutzeler, Jérôme Malick, and Panayotis Mertikopoulos. On the Convergence of Single-Call Stochastic Extra-Gradient Methods. In NeurIPS, 2019.
- Y. H., Gang Niu, and Masashi Sugiyama. Classification from Positive, Unlabeled and Biased Negative Data. In ICML, 2019.

Proof Sketch for Regret Bound of AdaDelay-Dist

- Show that the learning rate is non-increasing along a faithful permutation π
- Show that $\eta_{\pi(t)+2\tau+1} \leq R/\sqrt{\Lambda_t^{\pi}}$
- Apply template regret bound to conclude

Stochastic Feedback in Asynchronous Decentralized Online Learning

- The template regret bound still holds when noise variance is bounded
- We recover the same results for learning rates that do not depend on the realization
- For AdaDelay-Dist we require the feedback to be bounded almost surely, and we get regret with a $\mathbb{E}[\sqrt{\Lambda_T}]$ term

Bandit Feedback in Asynchronous Decentralized Online Learning

The vector z_t randomly drawn from the sphere

• Two-point estimate:

$$g_t = \frac{d}{2\delta} (\ell_t (y_t + \delta z_t) - \ell_t (y_t + \delta z_t)) z_t$$

We have $||g_t|| \leq Gd$, so everything still holds and δ should be as small as possible

• Single-point estimate:

$$g_t = \frac{d}{\delta} (\ell_t (y_t + \delta z_t)) z_t$$

We have $||g_t|| \leq \frac{Fd}{\delta}$, bias is in δ , regret is $\mathcal{O}(D^{1/4}T^{1/2})$ if everything properly tuned In both cases, $\mathbb{E}[g_t] = \nabla \tilde{\ell}(y_t)$ for $\tilde{\ell}(x) = \mathbb{E}_{z \in \mathbb{B}}[\ell(x + \delta z)]$

Bandit Feedback in Asynchronous Decentralized Online Learning

- We need to know the sampled vector associated to each feedback loss
- How can we adaptively tune δ ?

Mirror Descent versus Dual Averaging

Mirror descent type methods with dynamic learning rates may incur regret

Assume that player 1 has a linear loss and simplex-constrained action set.

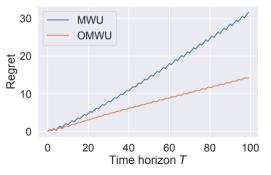
•
$$\mathcal{X}^1 = \Delta^1 = \{(w_1, w_2) \in \mathbb{R}^2, w_1 + w_2 = 1\}$$

• Feedback sequence:

$$\underbrace{[-e_1,\ldots,-e_1}_{[T/3]},\underbrace{-e_2,\ldots,-e_2}_{\lfloor 2T/3\rfloor}]$$

• Adaptive (Optimistic) Multiplicative Weight Update

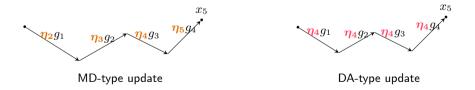
(Example from [Orabona and Pal 16])



Mirror Descent versus Dual Averaging

Mirror descent type methods with dynamic learning rates may incur regret

- Cause: new information enters MD with a decreasing weight
- Solution: enter each feedback with equal weight E.g. Dual averaging or stabilization technique



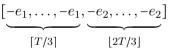
Mirror Descent versus Dual Averaging

Mirror descent type methods with dynamic learning rates may incur regret

Assume that player 1 has a linear loss and simplex-constrained action set.

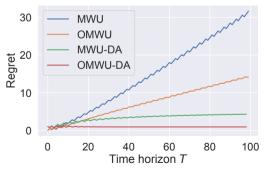
•
$$\mathcal{X}^1 = \Delta^1 = \{(w_1, w_2) \in \mathbb{R}^2, w_1 + w_2 = 1\}$$

• Feedback sequence:



• Adaptive (Optimistic) Multiplicative Weight Update with Dual Averaging

(Example from [Orabona and Pal 16])



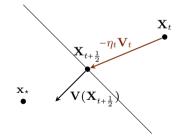
Optimistic Algorithm: A General Procedure

Two types of states: memory y_t and action x_t

- Optimistic step: Compute x_t from y_t using a guess \tilde{g}_t , play x_t
- Update step: Update the memory from y_t to y_{t+1} using feedback g_t

Examples: • Mirror-prox [Nemirovski 04] • optimistic FTRL [Joulani et al. 17]

$$\mathbf{X}_{t+\frac{1}{2}} = \mathbf{X}_t - \eta_t \mathbf{V}_t, \quad \mathbf{X}_{t+1} = \mathbf{X}_t - \eta_{t+1} \mathbf{V}(\mathbf{X}_{t+\frac{1}{2}})$$



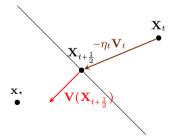
58/51

Optimistic Gradient as Relaxed Projection onto Separating Hyperplane

$$\mathbf{X}_{t+\frac{1}{2}} = \mathbf{X}_t - \eta_t \mathbf{V}_t, \quad \mathbf{X}_{t+1} = \mathbf{X}_t - \eta_{t+1} \mathbf{V}(\mathbf{X}_{t+\frac{1}{2}})$$

• Consider the hyperplan

$$\mathcal{H} \coloneqq \{\mathbf{x} : \langle \mathbf{V}(\mathbf{X}_{t+\frac{1}{2}}), \mathbf{X}_{t+\frac{1}{2}} - \mathbf{x} \rangle = 0 \}$$



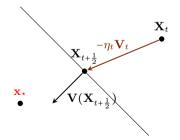
Optimistic Gradient as Relaxed Projection onto Separating Hyperplane

$$\mathbf{X}_{t+\frac{1}{2}} = \mathbf{X}_t - \eta_t \mathbf{V}_t, \quad \mathbf{X}_{t+1} = \mathbf{X}_t - \eta_{t+1} \mathbf{V}(\mathbf{X}_{t+\frac{1}{2}})$$

• Consider the hyperplan

$$\mathcal{H} \coloneqq \{\mathbf{x} : \langle \mathbf{V}(\mathbf{X}_{t+\frac{1}{2}}), \mathbf{X}_{t+\frac{1}{2}} - \mathbf{x} \rangle = 0 \}$$

• Assumption: $\langle \mathbf{V}(\mathbf{X}_{t+\frac{1}{2}}), \mathbf{X}_{t+\frac{1}{2}} - \mathbf{x}_{\star} \rangle \geq 0$

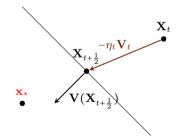


$$\mathbf{X}_{t+\frac{1}{2}} = \mathbf{X}_t - \eta_t \mathbf{V}_t, \quad \mathbf{X}_{t+1} = \mathbf{X}_t - \eta_{t+1} \mathbf{V}(\mathbf{X}_{t+\frac{1}{2}})$$

• Consider the hyperplan

$$\mathcal{H} \coloneqq \{\mathbf{x} : \langle \mathbf{V}(\mathbf{X}_{t+\frac{1}{2}}), \mathbf{X}_{t+\frac{1}{2}} - \mathbf{x} \rangle = 0\}$$

• Assumption: $\langle \mathbf{V}(\mathbf{X}_{t+\frac{1}{2}}), \mathbf{X}_{t+\frac{1}{2}} - \mathbf{x}_{\star} \rangle \ge 0$ Monotone: $\langle \mathbf{V}(\mathbf{x}') - \mathbf{V}(\mathbf{x}), \mathbf{x}' - \mathbf{x} \rangle \ge 0$



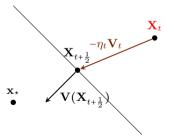
58 / 51

$$\mathbf{X}_{t+\frac{1}{2}} = \mathbf{X}_t - \eta_t \mathbf{V}_t, \quad \mathbf{X}_{t+1} = \mathbf{X}_t - \eta_{t+1} \mathbf{V}(\mathbf{X}_{t+\frac{1}{2}})$$

• Consider the hyperplan

$$\mathcal{H} \coloneqq \{\mathbf{x} : \langle \mathbf{V}(\mathbf{X}_{t+\frac{1}{2}}), \mathbf{X}_{t+\frac{1}{2}} - \mathbf{x} \rangle = 0 \}$$

- Assumption: $\langle \mathbf{V}(\mathbf{X}_{t+\frac{1}{2}}), \mathbf{X}_{t+\frac{1}{2}} \mathbf{x}_{\star} \rangle \geq 0$
- If $\mathbf{V}(\mathbf{X}_{t+\frac{1}{2}}) \approx \mathbf{V}_t$ then $\langle \mathbf{V}(\mathbf{X}_{t+\frac{1}{2}}), \mathbf{X}_{t+\frac{1}{2}} - \mathbf{X}_t \rangle = -\eta_t \langle \mathbf{V}(\mathbf{X}_{t+\frac{1}{2}}), \mathbf{V}_t \rangle \leq 0$



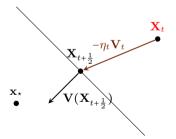
$$\mathbf{X}_{t+\frac{1}{2}} = \mathbf{X}_t - \eta_t \mathbf{V}_t, \quad \mathbf{X}_{t+1} = \mathbf{X}_t - \eta_{t+1} \mathbf{V}(\mathbf{X}_{t+\frac{1}{2}})$$

• Consider the hyperplan

$$\mathcal{H} \coloneqq \{\mathbf{x} : \langle \mathbf{V}(\mathbf{X}_{t+\frac{1}{2}}), \mathbf{X}_{t+\frac{1}{2}} - \mathbf{x} \rangle = 0\}$$

- Assumption: $\langle \mathbf{V}(\mathbf{X}_{t+\frac{1}{2}}), \mathbf{X}_{t+\frac{1}{2}} \mathbf{x}_{\star} \rangle \geq 0$
- If $\mathbf{V}(\mathbf{X}_{t+\frac{1}{2}}) \approx \mathbf{V}_t$ then $\langle \mathbf{V}(\mathbf{X}_{t+\frac{1}{2}}), \mathbf{X}_{t+\frac{1}{2}} - \mathbf{X}_t \rangle = -\eta_t \langle \mathbf{V}(\mathbf{X}_{t+\frac{1}{2}}), \mathbf{V}_t \rangle \leq 0$

This is why we require Lipschitz continuity



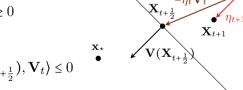
Optimistic Gradient as Relaxed Projection onto Separating Hyperplane

$$\mathbf{X}_{t+\frac{1}{2}} = \mathbf{X}_t - \eta_t \mathbf{V}_t, \quad \mathbf{X}_{t+1} = \mathbf{X}_t - \eta_{t+1} \mathbf{V}(\mathbf{X}_{t+\frac{1}{2}})$$

• Consider the hyperplan

$$\mathcal{H} \coloneqq \{ \mathbf{x} : \langle \mathbf{V}(\mathbf{X}_{t+\frac{1}{2}}), \mathbf{X}_{t+\frac{1}{2}} - \mathbf{x} \rangle = 0 \}$$

- Assumption: $\langle \mathbf{V}(\mathbf{X}_{t+\frac{1}{2}}), \mathbf{X}_{t+\frac{1}{2}} \mathbf{x}_{\star} \rangle \ge 0$
- If $\mathbf{V}(\mathbf{X}_{t+\frac{1}{2}}) \approx \mathbf{V}_t$ then $\langle \mathbf{V}(\mathbf{X}_{t+\frac{1}{2}}), \mathbf{X}_{t+\frac{1}{2}} - \mathbf{X}_t \rangle = -\eta_t \langle \mathbf{V}(\mathbf{X}_{t+\frac{1}{2}}), \mathbf{V}_t \rangle \leq 0$



• The update step moves the iterate closer to the solutions

Perspectives

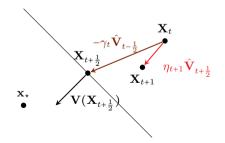
An Intuition Behind Scale Separation of Learning Rates

$$X_{t+\frac{1}{2}}^{i} = X_{t}^{i} - \gamma_{t}^{i} g_{t-1}^{i}, \qquad X_{t+1}^{i} = X_{t}^{i} - \eta_{t+1}^{i} g_{t}^{i}$$
(OG+)
$$X_{t+\frac{1}{2}}^{i} = X_{t}^{i} - \gamma_{t}^{i} g_{t-1}^{i}, \qquad X_{t+1}^{i} = X_{1}^{i} - \eta_{t+1}^{i} \sum_{s=1}^{t} g_{s}^{i}$$
(OptDA+)

• Variational stability

$$\langle \mathbf{V}(\mathbf{x}), \mathbf{x} - \mathbf{x}_{\star} \rangle \geq 0$$

• Stochastic update: relaxation of an approximate projection step with relaxation factor of the order of $\eta_{t+1}/\gamma_t \rightarrow$ the ratio η_{t+1}/γ_t should go to 0



Sketch of Proof: Energy Inequality of OptDA+

$$\begin{split} \mathbb{E}_{t-1} \left[\frac{\|X_{t+1}^{i} - p^{i}\|^{2}}{\eta_{t+1}^{i}} \right] &\leq \mathbb{E}_{t-1} \left[\frac{\|X_{t}^{i} - p^{i}\|^{2}}{\eta_{t}^{i}} + \left(\frac{1}{\eta_{t+1}^{i}} - \frac{1}{\eta_{t}^{i}}\right) \|X_{1}^{i} - p^{i}\|^{2} \\ \text{linearized regret} \right) &\quad -2\langle V^{i}(\mathbf{X}_{t+\frac{1}{2}}), X_{t+\frac{1}{2}}^{i} - p^{i} \rangle \\ \text{(negative drift)} &\quad -\frac{\gamma_{t}^{i}}{\gamma_{t}^{i}} \left(\|\nabla_{i} \ell^{i}(\mathbf{X}_{t+\frac{1}{2}})\|^{2} + \|\nabla_{i} \ell^{i}(\mathbf{X}_{t-\frac{1}{2}})\|^{2} \right) \\ \text{(variation)} &\quad -\frac{\|X_{t}^{i} - X_{t+1}^{i}\|^{2}}{2\eta_{t}^{i}} + \gamma_{t}^{i} \|\nabla_{i} \ell^{i}(\mathbf{X}_{t+\frac{1}{2}}) - \nabla_{i} \ell^{i}(\mathbf{X}_{t-\frac{1}{2}})\|^{2} \\ \text{(noise)} &\quad + \frac{(\gamma_{t}^{i})^{2}}{2} L \|\xi_{t-1}^{i}\|^{2} + L \|\boldsymbol{\xi}_{t-\frac{1}{2}}\|^{2} \\ (\eta_{t}+\gamma_{t})^{2} &\quad + 2 \eta_{t}^{i} \|g_{t}^{i}\|^{2} \end{bmatrix} \end{split}$$

November 7th 2023

Sketch of Proof: Adaptive Learning Rate

$$\Lambda_t^i = \sum_{s=1}^t \|g_s^i\|^2, \qquad \Gamma_t^i = \sum_{s=1}^t \|X_s^i - X_{s+1}^i\|^2$$

• For some constants c_1, c_2 ,

$$\sum_{t=1}^{T} \mathbb{E}[\|\mathbf{V}(\mathbf{X}_{t+\frac{1}{2}})\|_{\boldsymbol{\gamma}_{t}}^{2}] + \frac{1}{8} \sum_{t=1}^{T} \mathbb{E}[\|\mathbf{X}_{t} - \mathbf{X}_{t+1}\|^{2}] \le c_{1} \sum_{i=1}^{N} \mathbb{E}\left[\sqrt{\Lambda_{T}^{i}}\right] + c_{2},$$

Sketch of Proof: Adaptive Learning Rate

$$\Lambda_t^i = \sum_{s=1}^t \|g_s^i\|^2, \qquad \Gamma_t^i = \sum_{s=1}^t \|X_s^i - X_{s+1}^i\|^2$$

• For some constants c_1, c_2 ,

$$\begin{split} \sum_{t=1}^{T} \mathbb{E}[\|\mathbf{V}(\mathbf{X}_{t+\frac{1}{2}})\|_{\boldsymbol{\gamma}_{t}}^{2}] &+ \frac{1}{8} \sum_{t=1}^{T} \mathbb{E}[\|\mathbf{X}_{t} - \mathbf{X}_{t+1}\|^{2}] \leq c_{1} \sum_{i=1}^{N} \mathbb{E}\left[\sqrt{\Lambda_{T}^{i}}\right] + c_{2}, \\ \\ \text{Bound from below with } \Lambda_{T}^{i} \\ \text{Multiplicative noise: for some constant } C, \sum_{i=1}^{N} \mathbb{E}\left[\sqrt{1 + \Lambda_{T}^{i}}\right] \leq C \text{ and } \sum_{i=1}^{N} \mathbb{E}[\Gamma_{T}^{i}] \leq C \end{split}$$

۲

Sketch of Proof: Adaptive Learning Rate

$$\Lambda_t^i = \sum_{s=1}^t \|g_s^i\|^2, \qquad \Gamma_t^i = \sum_{s=1}^t \|X_s^i - X_{s+1}^i\|^2$$

• For some constants c_1, c_2 ,

$$\sum_{t=1}^{T} \mathbb{E}[\|\mathbf{V}(\mathbf{X}_{t+\frac{1}{2}})\|_{\gamma_{t}}^{2}] + \frac{1}{8} \sum_{t=1}^{T} \mathbb{E}[\|\mathbf{X}_{t} - \mathbf{X}_{t+1}\|^{2}] \le c_{1} \sum_{i=1}^{N} \mathbb{E}\left[\sqrt{\Lambda_{T}^{i}}\right] + c_{2},$$

Bound from below with Λ_{T}^{i}

- Multiplicative noise: for some constant C, $\sum_{i=1} \mathbb{E}\left[\sqrt{1 + \Lambda_T^i}\right] \le C$ and $\sum_{i=1} \mathbb{E}[\Gamma_T^i] \le C$
- Convergence: Apply Robbins–Siegmund's theorem and define $\tilde{X}_t^i = X_t^i + \eta_t^i \xi_{t-1}^i$

Other Ways to Handle Noise

• Mini-batching: its naive implementation does not work for online learning

 $1, -1, -1, 1, 1, 1, -1, \ldots$

The player plays

$$0, -\eta, -\eta, 0, 0, 0, -\eta, \ldots$$

Regret with respect to 0 is $(a_2 + a_4 + ...)\eta \ge \eta T/2$

• Anchoring: we lose the faster convergence rate under error bound condition

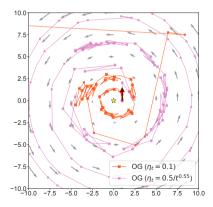
Toward Robustness Against Noise

All the favorable guarantees break if feedback is noisy

- Stochastic estimate $\mathbb{E}[\hat{\mathbf{V}}_{t+\frac{1}{2}}] = \mathbf{V}(\mathbf{X}_{t+\frac{1}{2}})$ $\hat{\mathbf{V}}_{t+\frac{1}{2}} = \begin{cases} (3\phi_{t+\frac{1}{2}}, -3\theta_{t+\frac{1}{2}}) & \text{with prob. } 1/2\\ (-\phi_{t+\frac{1}{2}}, \theta_{t+\frac{1}{2}}) & \text{with prob. } 1/2 \end{cases}$
- The two players play optimistic gradient with decreasing η_t = $0.1/\sqrt{t}$

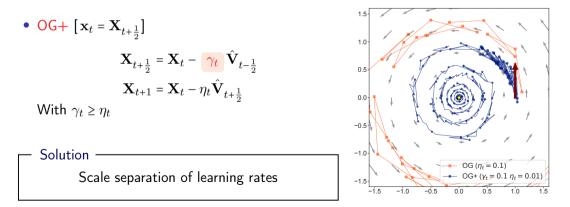
Problem

We observe non-convergence and linear regret



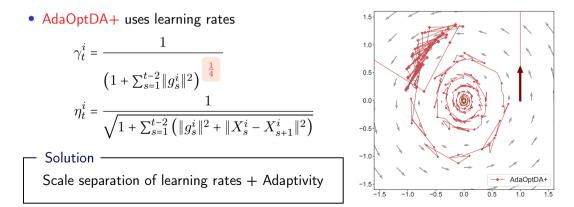
Toward Robustness Against Noise

All the favorable guarantees break if feedback is noisy



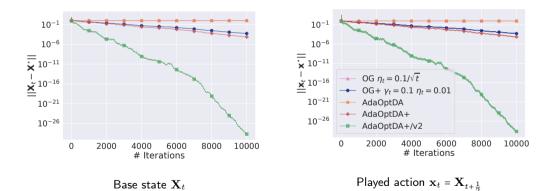
Toward Robustness Against Noise

All the favorable guarantees break if feedback is noisy



Convergence to Solution Under Multiplicative Noise

•
$$\hat{\mathbf{V}}_{t+\frac{1}{2}}$$
 is $(3\phi_{t+\frac{1}{2}}, -3\theta_{t+\frac{1}{2}})$ or $(-\phi_{t+\frac{1}{2}}, \theta_{t+\frac{1}{2}})$ with probability one half for each



Perspectives

Convergence to Solution Under Additive Noise

•
$$\hat{\mathbf{V}}_{t+\frac{1}{2}} = (\phi_{t+\frac{1}{2}} + \xi_t^1, -\theta_{t+\frac{1}{2}} + \xi_t^2)$$
 where $\xi_t^1, \xi_t^2 \sim \mathcal{N}(0, 1)$

