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Decision-Making in Multi-Agent Systems: Challenges

* Non-stationary environment [Online learning]
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Decision-Making in Multi-Agent Systems: Challenges

* Non-stationary environment [Online learning]

e Conflicting interests [Game theory]
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Conflicting interests [Game theory]
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® Uncertainty

Yu-Guan Hsieh Decision-Making in Multi-Agent Systems November 7th 2023 3/51




Decision-Making in Multi-Agent Systems: Challenges

* Non-stationary environment [Online learning]

e Conflicting interests [Game theory]

Lack of coordination

Asynchronicity and delays

Uncertainty

Need for adaptive methods
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Common challenges: adaptive learning, lack of coordination, non-stationarity
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Introduction

Online Learning: A Framework For Sequential Decision Making

At each round t =1,2,..., the learner

- Plays an action z; € X

- Suffers loss ¢;(x;) and receives feedback g,

Learner
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Introduction

Online Learning: A Framework For Sequential Decision Making

At each round t =1,2,..., the learner

- Plays an action z; € X

- Suffers loss ¢;(x;) and receives feedback g,

e Regret of the learner with respect to pe X is
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Introduction

Online Learning: A Framework For Sequential Decision Making

At each round t =1,2,..., the learner

- Plays an action z; € X

- Suffers loss ¢;(x;) and receives feedback g,

e Regret of the learner with respect to pe X is

gt

G

I A,
Regr(p) = Y. (Le(xe) — () ) S——=

= Learner
cost of not playing p in round ¢

® Online convex optimization: ¢; is convex with V ¢;(z;) a (sub)gradient

* Online learning with first-order feedback: g; ~ V £;(x¢)
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Introduction

Source of Non-Stationarity

Part |: Learning in the Presence of Delays
& Asynchronicities
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Learning in the Presence of Delays & Asynchronicities

Part |: Learning in the Presence of Delays & Asynchronicities
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Contributions for Part |

A framework for asynchronous decentralized online learning
Delayed dual averaging _
In this defense
Template regret bound
Adaptive learning rate with bounded delay assumption
Adaptive learning rate without bounded delay assumption in single-agent setup
Relation to distributed online learning
Application to open network

Optimistic variant

1. H., lutzeler, Malick, and Mertikopoulos. Multi-agent online optimization with delays: Asynchronicity, adaptivity,
and optimism. JMLR, 2022.

2. H., lutzeler, Malick, and Mertikopoulos. Optimization in Open Networks via Dual Averaging. CDC, 2021.
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Learning in the Presence of Delays & Asynchronicities

A Framework for Asynchronous Decentralized Online Learning

At each round t = 1,2, ..., an agent i(t)

- Becomes active and plays an action z; € X
- Suffers loss ¢¢(x;) and receives feedback g; = V ¢;(x¢)

- Communicates with other agents
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A Framework for Asynchronous Decentralized Online Learning

At each round t = 1,2, ..., an agent i(t)

- Becomes active and plays an action z; € X

- Suffers loss ¢;(x;) and receives feedback g; = V £;(1) Potentially with delay

- Communicates Wlth Other agents Asynchronous communication

® Regret of the system with respect to p € X is w
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Learning in the Presence of Delays & Asynchronicities

An Example With Two Agents

Time t 1 2 3 4 )
Active agent i(t)
Point played x;

Gradients received by 1
S

Gradients received by 2
St
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An Example With Two Agents
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An Example With Two Agents
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Feedback Sequence

Time ¢
Active agent i(t)

Point played z;
Gradients received by 1
St

Gradients received by 2
St

Feedback sequence S;
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Delayed Dual Averaging

Dual averaging [Nesterov 09] Delayed dual averaging [H. et al. 22]

-1
$t=HX(561—77t295) mt=Hx(fB1—ﬁtng)

s=1 SESt

® {gs:s5€S;} are the gradients the active agent i(¢) can use to compute x;

e TIy is Euclidean projection onto the set X
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Delayed Dual Averaging

Dual averaging [Nesterov 09] Delayed dual averaging [H. et al. 22]

-1
$t=HX($1—77tZQS) SUt=HX(fB1—7]tng)

s=1 SESt

{gs : s € S;} are the gradients the active agent i(¢) can use to compute x;

ITx is Euclidean projection onto the set X
Example: S5 ={2,3,1}
All the gradients have the same weight
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Delayed Dual Averaging

Dual averaging [Nesterov 09] Delayed dual averaging [H. et al. 22]
t-1
xt=Hx(:c1—mng) =Ty |z1-m Y gs
s=1 SESt

{gs : s € S;} are the gradients the active agent i(¢) can use to compute x;

ITx is Euclidean projection onto the set X
Example: S5 ={2,3,1}
All the gradients have the same weight

Issue: learning rate 7; needs to be non-increasing
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Dependency Graph

Key observation: only S; counts for the algorithm

® Dependency graph G: Each vertex is a timestamp, and we put a directed edge from s
to t if and only if s € S;

* Example: §; =82 =3; S3={2}; Sa={1}; S5 ={2,3,1}

® ©) ® ® ®
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Learning in the Presence of Delays & Asynchronicities

Faithful Permutation

Key observation: only S; counts for the algorithm

e Faithful permutation: A permutation 7 of {1,2,...,T} is faithful if and only if
w(1),...,m(T) is a topological ordering of G

e Example: {1,2,3,4,5} and {2,1,4,3,5} are faithful for S; = S = &; S3 = {2};
84 = {1}1 85 = {2’37 1}

November 7th 2023 14 /51
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Template Regret Bound

— Theorem [H. et al. 22]

Let 7 be a faithful permutation of {1,...,7}, and assume that delayed dual aver-

aging is run with 7 satisfying that | 7 (¢11) < 7r ) | for all £. Then,

R |z -pl*  1Z b5
egr(p)< ———— + 5 > x| gz@ll® + 29z X losll )
(T t=1 seUf

f ! 1

From undelayed dual averaging

Here U = {m(1),...,m(t)} \ Sz

Induced by delays
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— Theorem [H. et al. 22]

Let 7 be a faithful permutation of {1,...,7}, and assume that delayed dual aver-

aging is run with 7 satisfying that | 7 (¢11) < 7r ) | for all £. Then,
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From undelayed dual averaging

Here U = {m(1),...,m(t)} \ Sz

Induced by delays

Q1: What is the optimal regret bound?
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Learning in the Presence of Delays & Asynchronicities

Template Regret Bound

— Theorem [H. et al. 22]

Let 7 be a faithful permutation of {1,...,7}, and assume that delayed dual aver-

aging is run with 7 satisfying that | 7 (¢11) < 7r ) | for all £. Then,

R |z -pl*  1Z b5
egr(p)< ———— + 5 Y| lgzyll® + 2lg-c)ll > losl |-
(T t=1 seUT

f ! 1

From undelayed dual averaging

Here U = {m(1),...,m(t)} \ Sz

Q1: What is the optimal regret bound? Q2: How to interpret the additional terms?
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Learning in the Presence of Delays & Asynchronicities

Lag and Ideal Regret Bound

The lag with respect to 7 up to time ¢ is

t

A=Y (gﬂs)? gl 3 ||gl||).
leUr

s=1

— Corollary

Let 7 be a faithful permutation of {1,..., T}, and assume that delayed dual aver-
aging is run with 0.y = 1/\/AT or 0y = 1/\/A], then the regret is

Regr(p) = O(/AF)
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Interpretation of Lag

The lag with respect to 7 up to time ¢ is

t
AT=) (\gﬂ(s) 1+ 2l gyl 3 o II)-

s=1 LUz

Proposition

The term 822”%(5)” le%:;nglH contains the pairs ’(GYQY@ a

of non-adjacent vertices in Gyr(1),..x(t))-

Consequences: ® AT = Aiﬁ ® Lag is both data- and delay-dependent
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Regret Bound in the Case of Bounded Delay

The lag with respect to 7 up to time ¢ is

t

A=Y (Hgﬂs)rr? +20gmnl 3 il )
le’r

s=1
| —
Pairs of non-adjacent vertices in Gy (1),....x(¢)}

e If | g:| < G and delay is bounded by 7, then Ald < (27 + 1)¢tG>

e Setting n, = 1/V/7t gives O(V7T) regret
Similar result in [Weinberger and Ordentlich 02, Langford et al. 09] for constant delay 7
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Non-Implementability of the Algorithms

The lag with respect to 7 up to time ¢ is

t
Ty (Hgﬂs)IIQ 2 gniol 3 lal )

s=1 leUTr
| —

Pairs of non-adjacent vertices in Gy((1),....x(¢)}

® Ny = 1/\/AF: Af cannot be computed at time 7(t)
e 1 =1/\/7t: Even 7 and t might be unknown
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Adaptive Learning Rate

Approximate By
t 2
2 lgs]” + 2llgs Mgl
N =Ylaol+ T 2aollsal & 1002 2
s=1 <t .
(5)n(D) sl
e S5={2,3,1} ® — indicates “non-adjacent in the dependency graph”
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Learning in the Presence of Delays & Asynchronicities

Adaptive Learning Rate: Issues

L

{01,929} n l .3 J £}
| € ! 1 1
s 1 T2 T3 Tg T7

L T A
g5——@ 91 92 93 96 91

Two issues:

@ Naive implementation of the algorithm requires to identify each gradient, unbounded
memory, and high time complexity.

@ Is the induced learning rate non-increasing along some faithful permutation?
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Adaptive Learning Rate: Assumption

S , TN S
191,92, 93} RS l 3 J £
l ¢ . ! !
:1:5 II?1 To T3 Tg T7

A
95—>. 9192939697

Assumption: When an agent receives g;, it must have received {gs: s € S;}

Satisfied if all the gradients are transmitted in order

Yu-Guan Hsieh Decision-Making in Multi-Agent Systems November 7th 2023 22 /51



Adaptive Learning Rate: Pseudo-Code

Algorithm AdaDelay-Dist — from the point of view of agent ¢

1: Initialize: G; <« @, ' « 58>0, R>0
2: while not stopped do
3:  asynchronously receive g; (along with > |g,| if sent by other agents)

seS;
4: D' T+ ge® + 2091 (3 llgs] - Z lgs1)
segt seSy
5 G <g u{g:}
6:  if the agent becomes active, i.e., i(t) = ¢ then
& S+ G;
8: N < R/\/I_‘Z
9: Play x; =1 (xl - Z gs)
s€Sy
10: end if

11: end while
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Learning in the Presence of Delays & Asynchronicities

Regret Bound for AdaDelay-Dist

— Theorem [H. et al. 22]

Assume that

® Forallt, |g] <G
® Delays are bounded by 7 (possibly unknown)
® When an agent receives g;, they have already received {gs: s € S;}

Then, if |21 - p|* < 2R?, the algorithm AdaDelay-Dist enjoys the regret bound

Regr(p) £ 2R\/Ar +2R\/B+ %Gz(QT + 1)2

— \/_
Lag: data- and ] .
delay-dependent price of adaptivity

Yu-Guan Hsieh Decision-Making in Multi-Agent Systems November 7th 2023 24 /51



Learning in the Presence of Delays & Asynchronicities

Regret Bound for AdaDelay-Dist

— Theorem [H. et al. 22]

Assume that

® Forallt, |g] <G
@® Delays are bounded by 7 (possibly unknown)
® When an agent receives g;, they have already received {gs: s € S;}

Then, if |21 - p|* < 2R?, the algorithm AdaDelay-Dist enjoys the regret bound

Regr(p) < 2R\/Ar +2R\/B+ %Gz(QT + 1)2

— \/_
Lag: data- and ] .
delay-dependent price of adaptivity

Yu-Guan Hsieh Decision-Making in Multi-Agent Systems November 7th 2023 24 /51



Learning in the Presence of Delays & Asynchronicities

Regret Bound for AdaDelay-Dist

— Theorem [H. et al. 22]
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® Forallt, |g] <G
@® Delays are bounded by 7 (possibly unknown)
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What We Have Seen in This Part

e A framework for decentralized online learning

e Simple algorithm template with data- and
delay-adaptive learning rate

. s
e Examined Challenges NS
» Asynchronicity and delays e s
» Non-stationarity a N
» Lack of coordination & (\\)‘__\ \;;q
. . < Agent 2 (active T
> S~ .-~
Adaptive learning Aeamel e o Agent 3

communication
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Learning in the Presence of Delays & Asynchronicities

What We Have Seen in This Part

e A framework for decentralized online learning
e Simple algorithm template with data- and
delay-adaptive learning rate

e Examined Challenges

» Asynchronicity and delays

> Non-stationarity

» Lack of coordination

» Adaptive learning
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Adaptive Learning in Continuous Games

Part |I: Adaptive Learning in Continuous Games
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Adaptive Learning in Continuous Games

Learning in Continuous Games With Gradient Feedback

At each round t = 1,2, ..., each player i e N == {1,..., N}

- Plays an action zj € X"

- Suffers loss ¢/(x;) and receives as feedback g} ~ V; £(x;)

* Each player i has a convex closed action set X% and a loss
function £: X1 x ... x XN >R

e Joint action of all players x = (z%);enr = (2, x7)

Yu-Guan Hsieh Decision-Making in Multi-Agent Systems
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Learning in Continuous Games With Gradient Feedback

At each round t = 1,2, ..., each player i e N == {1,..., N}

- Plays an action zj € X"

- Suffers loss ¢/(x;) and receives as feedback g} ~ V; £(x;)

a

‘ ©
® Each player i has a convex closed action set A and a loss P'; er22
function /X x ... x XN S R i Tgt

e Joint action of all players x = (z%);enr = (2, x7)
1 3
% N

o gt @
@ @
Player 1 Player 3
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Adaptive Learning in Continuous Games

Learning in Continuous Games With Gradient Feedback

At each round t = 1,2, ..., each player i e N == {1,..., N}

- Plays an action z} € X"

- Suffers loss ¢/(x;) and receives as feedback g} ~ V; £(x;)

* Each player i has a convex closed action set X% and a loss
function =Xt x ... x XN SR

* Joint action of all players x = (2%);enr = (2%, x7")
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Adaptive Learning in Continuous Games

Learning in Continuous Games With Gradient Feedback

At each round t = 1,2, ..., each player i e N == {1,..., N}

- Plays an action z! € X"
- Suffers loss ¢/(x;) and receives as feedback g} ~ V; £(x;)

® Each player i has a convex closed action set X and a loss P'aﬁe'f
t

function 7 X' x ... x XN SR
e Joint action of all players x = (z%);enr = (2, x7)
o (i(-,x%) is convex and V; £*(x;) is Lipschitz continuous 9 o
(x7) (xi) s Lip R
- Ty 9t ]
> @
Player 1 Player 3
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Adaptive Learning in Continuous Games

Evaluating Learning-in-Games Algorithms

Two interaction scenarios

e Adversarial: the actions of the other players are arbitrary

e Self-play: all the players use the same algorithm

Two evaluation criteria

* Regret of player i with respect to p' € X is

Regr(p') = ; (C(atx) =00 %")) [ie f=0(x")]

cost of not playing p' in round ¢

e Whether the sequence of play x; converges to a Nash equilibrium x,
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Adaptive Learning in Continuous Games

Evaluating Learning-in-Games Algorithms
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Variational Stability for Convergence to Nash Equilibrium

A continuous convex game is variationally stable (VS) if the set X, of Nash equilibria
of the game is nonempty and

N . . .
(V(x),x-x.) = > (Vi l'(x),2' —2.) >0 forall xe X, x. X,
=1

s

* Finding Nash Equilibrium is hard [Daskalakis et al. 08]

* Game vector field / Psudeo-gradient V()

Xx

V=(vil,...,vneN) o

® V monotone = VS satisfied
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Adaptive Learning in Continuous Games

Failure of the Vanilla Gradient Method in Bilinear Games

e Two-player planar bilinear zero-sum game e
4 o e = ™ ~ N
(1(x) =~L*(x) =06 [x=(0,¢) eR”] \
VR AN
Unique Nash equilibrium: (0,0) ’ P voov

o
-
-
%
>
—_—
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Adaptive Learning in Continuous Games

Failure of the Vanilla Gradient Method in Bilinear Games

e Two-player planar bilinear zero-sum game

Va
4
(%) = -C(x) =06 [x=(0,0) cR’] o
oA /7
e Game vector field ,
V(x) = (Vo l'(x),V42(x)) = (¢,-0) o
* Gradient descent _2\ o
NN
X1 =X - V(Xy) N -/
—+— gradient
—a 2 -

0 2 4
Yu-Guan Hsieh
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Adaptive Learning in Continuous Games

Optimistic Gradient to the Rescue

e Two-player planar bilinear zero-sum game

() = -(x) =8¢ [x=(0,9) ¢ R?]

® Game vector field

V(x) = (Vo l!(x), Vg (%)) = (¢,-0)
* Optimistic gradient descent [Popov 80]
Xﬁ_% = Xt - V(Xt—%)

X1 = X — 77t+1V(Xt+%) -2.0

Yu-Guan Hsieh

2.0

e

N T

—— gradient
—=— optimistic gradient

-2.0 -15 -1.0 -0.5

Decision-Making in Multi-Agent Systems

—
00 05 10 15 20

November 7th 2023

31/51



Adaptive Learning in Continuous Games

Optimistic Gradient in Purely Online Setup

Xia1 =M ( Xy = 1es191)

Online gradient descent: x; = X3

‘ T
Regr(p) = O ;Hgt 12| =0(/T) [Zinkevich 03]

Optimal in the worst case

Tt = Xt
X N2IL —pgg, (& —Utgy/"
X4 ............ ol

Yu-Guan Hsieh Decision-Making in Multi-Agent Systems



Optimistic Gradient in Purely Online Setup

Xia1 =M ( Xy = 1es191)

A conceptual algorithm: z; = Xyy1 = I (X4 — m4416¢)

Regr(p) = O(1)

This strategy is not implementable as it requires to know g; before playing x4

—Nt+17t

X291 -N392 X3_77493 —Utg%(tft: X1
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Optimistic Gradient in Purely Online Setup

Xia1 =M ( Xy = 1es191)

Optimistic gradient descent: xy = TTx (Xt — egi-1)

Regr(p) = O [Chiang et al. 12]

T
> lge = ge-1|?
=1

We are optimistic because we expect g;_1 to be close to ¢4

—NtGt—
X291 N493 Mg Te= X1
1 Mn3392 .X3 Xt

X2
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Contributions for Part |l

e Adaptive algorithm

® Robustness against noise

Sublinear regret against adversarial opponents In this defense
e Constant regret in self-play
e Convergence to Nash Equilibrium in self-play

e Convergence rates under error bound condition

Local convergence results

1. H., lutzeler, Malick, and Mertikopoulos. Explore Aggressively, Update Conservatively: Stochastic Extragradient
Methods with Variable Stepsize Scaling. NeurlPS, 2020.

2. H., Antonakopoulos, Mertikopoulos. Adaptive Learning in Continuous Games: Optimal Regret Bounds and
Convergence to Nash Equilibrium. COLT, 2021.

3. H., Antonakopoulos, Cevher, Mertikopoulos. No-Regret Learning in Games with Noisy Feedback: Faster Rates
and Adaptivity via Learning Rate Separation. NeurlPS, 2022.

Yu-Guan Hsieh Decision-Making in Multi-Agent Systems



Contributions for Part Il: Case of Perfect Feedback

e Adaptive algorithm

® Robustness against noise

Sublinear regret against adversarial opponents In this defense
e Constant regret in self-play
e Convergence to Nash Equilibrium in self-play

e Convergence rates under error bound condition

Local convergence results

1. H., lutzeler, Malick, and Mertikopoulos. Explore Aggressively, Update Conservatively: Stochastic Extragradient
Methods with Variable Stepsize Scaling. NeurlPS, 2020.

2. H., Antonakopoulos, Mertikopoulos. Adaptive Learning in Continuous Games: Optimal Regret Bounds and
Convergence to Nash Equilibrium. COLT, 2021.

3. H., Antonakopoulos, Cevher, Mertikopoulos. No-Regret Learning in Games with Noisy Feedback: Faster Rates
and Adaptivity via Learning Rate Separation. NeurlPS, 2022.
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Toward Adaptive Learning Rate

All the favorable guarantees break if learning rates are not properly tuned

e Two-player planar bilinear zero-sum game —— last

------ average

0M(x) = —0*(x) = 0 where X' =x?=[-4,8]

e The two players play optimistic gradient with
constant 7 =0.7 and 7" = 100

Problem

Convergence only holds for small enough 7
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Adaptive Learning in Continuous Games

Toward Adaptive Learning Rate

All the favorable guarantees break if learning rates are not properly tuned

.- e
e Two-player planar bilinear zero-sum game —— last

------ average
0'(x) = —%(x) =06 where X'=Xx2=[-4,8] ? \

= AY

e The two players play optimistic gradient with
. O.
decreasing n; = 1/v/t and T =100

~

. "
Solution?

Ny o< 1/\/2 — slow convergence

NN

Yu-Guan Hsieh
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Adaptive Learning in Continuous Games

Toward Adaptive Learning Rate

All the favorable guarantees break if learning rates are not properly tuned

e Two-player planar bilinear zero-sum game sl 7 B —— last
. /S < average
0M(x) = —0*(x) = 0 where X' =x?=[-4,8] J s N
11 vy
e The two players play optimistic gradient with 0. b .
adaptive 7y and T' = 100 bt
-1 1o VR
Solution I p
Adaptive learning rate ~
p g Y N -/
; -
-2 0 2
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Toward Adaptive Learning Rate

I . hi(p* ) minht L o, . &1 2
(9, Xpp1 —9') s ——F— Z nillge = gial” -2, a5 " || pet Xl
t=1 T+41 t=1 i=2 81z 2

Take the adaptive learning rate

. 1
= (Adapt)
Vi S g - g |2

e 79> 0 can be chosen freely by the player

e 1/ is thus computed solely based on local information available to each player
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Adaptive Learning in Continuous Games

Theoretical Guarantees

— Theorem [H. et al. 21]

Assume that player i runs OptDA with learning rate (Adapt), we have the following
guarantees under different situations:

‘ 0
® [Adversarial] Player i's regret is bounded as O > llgi - i, ]2
t=1

@ [Self-play] All the players have constant regret and the trajectory of play
converges to Nash equilibrium if the game is variationally stable.
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Optimistic Gradient Descent and Optimistic Dual Averaging

Optimistic gradient descent [Popov 80] Optimistic dual averaging [Song et al. 20]
X1 =Ta(X] - nig;4) X1 =Te(X] - 1ig;1)
2 2
X/ = (X! =0 g . L
o = el X = 090) = TLe(X] = D)
s=1
Ts5 x5
291 139 193 s 491 1ag 493 T4
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Adaptive Learning in Continuous Games

Optimistic Gradient Descent and Optimistic Dual Averaging

Optimistic gradient descent [Popov 80]
> X1 = (X = mi97-1)
Xio =x (X - 11197)

x5

201 739 493 s

Yu-Guan Hsieh Decision-Making in Multi-Agent Systems

Optimistic dual averaging [Song et al. 20]

- XJ 1 =Hx(X{ -nigi_1)

t+i
. . . t .
3 — 7 ) VA
t+l = HX(Xl ~ Mt+1 zgs)
s=1
Z5

491 149 493
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Optimistic Gradient Descent and Optimistic Dual Averaging

Optimistic gradient descent [Popov 80] Optimistic dual averaging [Song et al. 20]
X1 =Ta(X] - nig;4) X1 =a (X -njgi 1)
2 2
> Xjo = Ix (X = 7.007) ~ Ny
o Lo te1 = M (X7 =770 D 95)

s=1
Ts5 x5

291 139 193 s 491 1ag 493 T4
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Optimistic Gradient Descent and Optimistic Dual Averaging

Optimistic gradient descent [Popov 80] Optimistic dual averaging [Song et al. 20]
X1 =Ta(X] - nig;4) X1 =a (X -njgi 1)
2 2
X/ = (X! =0 g . L
o = (X = 1) Xy = (X = Y )
s=1
Ts5 x5
291 139 193 s 491 1ag 493 T4
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Contributions for Part II: What We Have Seen

e Adaptive algorithm

Robustness against noise

Sublinear regret against adversarial opponents In this defense

Constant regret in self-play

Convergence to Nash Equilibrium in self-play

e Convergence rates under error bound condition

Local convergence results

1. H., lutzeler, Malick, and Mertikopoulos. Explore Aggressively, Update Conservatively: Stochastic Extragradient
Methods with Variable Stepsize Scaling. NeurlPS, 2020.

2. H., Antonakopoulos, Mertikopoulos. Adaptive Learning in Continuous Games: Optimal Regret Bounds and
Convergence to Nash Equilibrium. COLT, 2021.

3. H., Antonakopoulos, Cevher, Mertikopoulos. No-Regret Learning in Games with Noisy Feedback: Faster Rates
and Adaptivity via Learning Rate Separation. NeurlPS, 2022.
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Contributions for Part II: What Comes Next

e Adaptive algorithm

® Robustness against noise

Sublinear regret against adversarial opponents In this defense

e Constant regret in self-play under multiplicative noise

e Convergence to Nash Equilibrium in self-play

e Convergence rates under error bound condition

Local convergence results

1. H., lutzeler, Malick, and Mertikopoulos. Explore Aggressively, Update Conservatively: Stochastic Extragradient
Methods with Variable Stepsize Scaling. NeurlPS, 2020.

2. H., Antonakopoulos, Mertikopoulos. Adaptive Learning in Continuous Games: Optimal Regret Bounds and
Convergence to Nash Equilibrium. COLT, 2021.

3. H., Antonakopoulos, Cevher, Mertikopoulos. No-Regret Learning in Games with Noisy Feedback: Faster Rates
and Adaptivity via Learning Rate Separation. NeurlPS, 2022.
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Stochasticity Breaks Optimistic Gradient

All the favorable guarantees break if feedback is stochastic

Stochastic Feedback
]E[V;+%] :(¢t+% ’ _€t+%)
_

V, 1is(-¢,, 1,0, 1)
t+d 4l L

p
—= 0G (1:=0.5) or (3¢, 1,-30. 1)

_ NN > t+3 t+4

15\ e 0G (7= 0.5/t°%%) 2 2

— B
15 -10 05 00 05 10 15 10.9%;

e 06 (7:=0.5/t0%5)
00 25 50 75 100
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Adaptive Learning in Continuous Games

Toward Robustness Against Noise: Learning Rate Separation

Problem: Noise present in the two steps

e OG+ [Xt =Xt+%]
Xt+% =X - 7tvt—§

X1 =Xy~ TItVH%
With ¢ >,

y 4

<= 0G(=01)
—e— OG+(y:=0.1n=0.01)

S >
0.5

e Similar to mini-batching of the update step

1.0 1.5
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Adaptive Learning in Continuous Games

Toward Robustness Against Noise: Learning Rate Separation

Problem: Noise present in the two steps

* OG+ [xy =Xt+%]

A~

Xt+% =Xi= % Vy

_1
2

X1 =Xy~ mVH%
With ¢ >

y 4

<= 0G(=01)
—e— OG+(y:=0.1n=0.01)

S >
0.5

e Similar to mini-batching of the update step

1.0 1.5
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Adaptive Learning in Continuous Games

Toward Robustness Against Noise: Learning Rate Separation

1.5
® OG+ is guaranteed to converge to Nash
equilibrium under VS if 10
oo 05
Z YtNt+1 = +00,
t=1 00{%
+o00 9 +00 9
D Vima <+o0, Y1y < +00 N
=1 t=1 '
e \We can take constant learning rates if the -10 .
.. C e Eia. ~-= 0G(n:=0.1)
noise is multiplicative _15\ NN o 06+ (e 01 ne=0.01)
-1.5 -1.0 -0.5 - 0.0 0/57 1.0 1.5
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Toward Robustness Against Noise: Adaptive Learning Rates

15 / ra
NN
e AdaOptDA+ uses learning rates 10 O\
; 1 05 o
M= ] )
t—2 il 1 0.0
(1+206i1?) .
1 -0.5
- s/
\/1+Z ||gs||2+ ”‘XZ _X;+1H2) -1.0 Y
e -
_1.5\ \ - —+— AdaOptDA+
-1.5 -1.0 -0.5 0.0 0/5' i.O 1.5
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Adaptive Learning in Continuous Games

Stochastic Oracle

 We focus on the unconstrained setup X* = RY

e Stochastic feedback g = V; £'(x;) + £ with noise satisfying
© Zero-mean: Ey[€1]=0
@ Variance control: B[ |€]]%] < 024g + 020 Vi £ (1))

e We say that the noise is multiplicative if o244 =0
Examples: ® Randomized coordinate descent
® Finite sum of operators whose solution sets intersect
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Theoretical Guarantees for Learning with Noisy Feedback: OG

Adversarial Self-Play + Variational Stability
Bounded feedback - - Strongly M
Noise Reg, Reg, Cvg? dist(X¢, Xy)
Vit Vit X 1Vt

06 [Chiang et al. 12] [Gidel et al. 19] [H. et al. 20] [H. et al. 19]
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Adaptive Learning in Continuous Games

Theoretical Guarantees for Learning with Noisy Feedback [H. et al. 22]

Adversarial Self-Play + Variational Stability
Bounded feedback - - Strongly M Error bound
Noise Reg, Reg, Cvg? dist(X¢, X.) dist(Xy, Xy)
- t v 1/t 1/t1/6
06+ i v Ve "
Mul. 1 v e’ e’
- VA 1/Vt 1/t
OptDA+
P Mul. Vi 1 v - -
, NG , ; i,
AdaOptDA 3/4
aOptDA+ Mul. t 1 v -
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Adaptive Learning in Continuous Games

Theoretical Guarantees With Unknown Time Horizon [H. et al. 22]

Adversarial Self-Play + Variational Stability
Bounded feedback - - Strongly M Error bound
Noise Reg, Reg, Cvg? dist(X¢, X.) dist(Xy, Xy)
; 1/6
0G+ X Vi v Ve e
Mul. 1 v e’ e’
; Vit , ; ;
OptDA+ t
P Mul. Vi 1 v - -
, NG , ; i,
AdaOptDA 3/4
aOptDA+ Mul. t 1 v - -
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Adaptive Learning in Continuous Games

Theoretical Guarantees With Unknown Time Horizon [H. et al. 22]

Adversarial Self-Play + Variational Stability
Bounded feedback - - Strongly M Error bound
Noise Reg, Reg, Cvg? dist(X¢, X,) dist(Xy, Xy)
_ 1/6
0G+ X Vi v Ve e
Mul. 1 v e’ e’
; Vit , ; ;
OptDA+ t
P Mul. Vi 1 Ve - _
, NG , ; i,
AdaOptDA 3/4
20PtDA+ ! 1 v i -
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Adaptive Learning in Continuous Games

Theoretical Guarantees With Unknown Time Horizon [H. et al. 22]

Adversarial Self-Play + Variational Stability
Bounded feedback - - Strongly M Error bound
Noise Reg, Reg, Cvg? dist(X¢, X.) dist(Xy, Xy)
_ 1/6
0G+ X Vi v Ve 1
Mul. 1 v e’ e’
; Vit , ; ;
OptDA+ t
P Mul. Vi 1 v - -
, NG , ; i,
AdaOptDA 3/4
20ptDA+ t 1 v i i
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What We Have Seen in This Part

¢ Learning-in-game algorithms run individually
without knowledge about the game

=
* Nearly optimal guarantees in different situations, ©
. . Player 2
potentially under noisy feedback ZI ,
x
e Examined Challenges 15

» Conflicting interests
» Non-stationarity y %
» Lack of coordination %/ g\.

. . Tt t =
> Adaptive learning @ @
> Uncertainty Player 1 Player 3
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Adaptive Learning in Continuous Games

What We Have Seen in This Part

® Learning-in-game algorithms run individually without
knowledge about the game

7
31 — last
¢ Nearly optimal guarantees in different /S~ average
situations, potentially under noisy feedback 2] . ~ N
e Examined Challenges o, Vo)
» Conflicting interests o1 ., vt
» Non-stationarity S P
» Lack of coordination .
. . —2<\ \ N ~ -
» Adaptive learning Py
» Uncertainty BN T P
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What We Have Seen in This Part

® Learning-in-game algorithms run individually without
knowledge about the game

* Nearly optimal guarantees in different
situations, potentially under noisy feedback

e Examined Challenges

» Conflicting interests
» Non-stationarity

» Lack of coordination
» Adaptive learning

> Uncertainty N —+— AdaOptDA+

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

Yu-Guan Hsieh Decision-Making in Multi-Agent Systems November 7th 2023 47 /51



Perspectives

Yu-Guan Hsieh Decision-Making in Multi-Agent Systems



Perspectives

¢ Better understanding of the algorithms

» Guarantees for broader family of algorithms as in no-regret [Sorin 23]
» Other guarantees: Policy regret [Arora et al. 12], dynamic regret [Zinkevich 03]

e Different setups
» Bandit [Cesa-Bianchi et al. 19, Tatarenko and Kamgarpour 18]
» Non-convex games [Daskalakis 22]
» Stochastic games [Shapley 53]
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Perspectives: Other Interesting Related Directions

e Evaluation and alignment of generative models with preference-based feedback

» Dueling bandit and learning in two-player zero-sum finite games [Ailon et al. 14]
» RLHF and learning in stochastic games [Wang et al. 23]

¢ One big model or many small models
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Proof Sketch for Regret Bound of AdaDelay-Dist

® Show that the learning rate is non-increasing along a faithful permutation =

¢ Show that Nr(t)+2r+1 < R/\/A?
e Apply template regret bound to conclude
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Stochastic Feedback in Asynchronous Decentralized Online Learning

e The template regret bound still holds when noise variance is bounded

* We recover the same results for learning rates that do not depend on the realization

® For AdaDelay-Dist we require the feedback to be bounded almost surely, and we get
regret with a E[\/Ar] term
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Bandit Feedback in Asynchronous Decentralized Online Learning

The vector z; randomly drawn from the sphere
® Two-point estimate:
gt = %(ft(yt +02t) = le(ye + 02¢)) 2
We have | g;:| < Gd, so everything still holds and ¢ should be as small as possible
® Single-point estimate:

d
gt = g(&(yt +0z)) 2

Fd
We have ||g¢| < 5 bias is in 0, regret is O(D1/4T1/2) if everything properly tuned

In both cases, E[g¢] = V {(y;) for £(z) = E.cp[(z +2)]
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Bandit Feedback in Asynchronous Decentralized Online Learning

® \We need to know the sampled vector associated to each feedback loss

e How can we adaptively tune §7
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Mirror Descent versus Dual Averaging

Mirror descent type methods with dynamic learning rates may incur regret

Assume that player 1 has a linear loss and simplex-constrained action set.

L4 Xl = Al = {(wl,wg) eRz,lerwg = 1}

30 — MwU
e Feedback sequence: —— OMWU
[—61,...,—61,—62,...,—62] *Q‘ZO
~ 3
[T/3] [27/3] ® o0
* Adaptive (Optimistic) Multiplicative
Weight Update 0
(Example from [Orabona and Pal 16]) 0 20 40 60 80

100
Time horizon T
Yu-Guan Hsieh

Decision-Making in Multi-Agent Systems

November 7th 2023

56 /51



Mirror Descent versus Dual Averaging

Mirror descent type methods with dynamic learning rates may incur regret

¢ Cause: new information enters MD with a decreasing weight
e Solution: enter each feedback with equal weight
E.g. Dual averaging or stabilization technique

Ts Zs

R -
291 nag a9z 8 491 Magpr0493

MD-type update DA-type update
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Mirror Descent versus Dual Averaging

Mirror descent type methods with dynamic learning rates may incur regret

Assume that player 1 has a linear loss and simplex-constrained action set.

L4 Xl = Al = {(wl,wg) eRz,lerwg = 1}

30 —— MWU
e Feedback sequence: —— OMWU
e e e —es] w09 —— MWU-DA
1yeeey 1, 25000y 2 05-’) OMWU-DA
e [0)
[T/3] [27/3] ® o0
* Adaptive (Optimistic) Multiplicative

Weight Update with Dual Averaging

(Example from [Orabona and Pal 16]) 0 20 40 60 80

100
Time horizon T
Yu-Guan Hsieh
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Optimistic Algorithm: A General Procedure

Two types of states: memory y; and action x;

e Optimistic step: Compute x; from y; using a guess g, play z;
e Update step: Update the memory from 1; to 3;,1 using feedback g;

Examples: ® Mirror-prox [Nemirovski 04] @ optimistic FTRL [Joulani et al. 17]
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Perspectives

Optimistic Gradient as Relaxed Projection onto Separating Hyperplane

X’t+ = Xt - ntVt, Xt+1 = Xt - 77t+1V(Xt+%)

1
2
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Perspectives

Optimistic Gradient as Relaxed Projection onto Separating Hyperplane

X1 =X =V, X1 =Xy - 77t+1V(Xt+%)

t+§

¢ Consider the hyperplan

H={x: (V(Xt+%)>Xt+% -x) =0}
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Optimistic Gradient as Relaxed Projection onto Separating Hyperplane

X

1
t+§

=X =mVe, X1 =Xi- 77t+1V(Xt+%)

¢ Consider the hyperplan

H = {XZ (V(Xt+%)’Xt+% —X> =0}
* Assumption: (V(X,,1),X,,1 -%x,.)>0
2 2
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Optimistic Gradient as Relaxed Projection onto Separating Hyperplane

X

1
t+§

=X =mVe, X1 =Xi- 77t+1V(Xt+%)

¢ Consider the hyperplan

H = {XZ (V(Xt+%)’Xt+% —X> = 0}
* Assumption: (V(X,,1),X,,1 -%x,.)>0
2 2
Monotone: (V(x') - V(x),x' -x)>0
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Optimistic Gradient as Relaxed Projection onto Separating Hyperplane

XH% =X =mVe, X1 =Xi- 77t+1V(Xt+%)

¢ Consider the hyperplan
H = {XZ (V(Xt+%)’Xt+% —X> = 0}
* Assumption: (V(X,,1),X,,1 -%x,.)>0
2 2
* If V(X,, 1)~V then
2
(V(XH%)’XH% —Xt> = —nt(V(XH%),Vt) <0
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Optimistic Gradient as Relaxed Projection onto Separating Hyperplane

XH% =X =mVe, X1 =Xi- 77t+1V(Xt+%)

¢ Consider the hyperplan
H = {XZ (V(Xt+%)’Xt+% —X> = 0}
* Assumption: (V(X,,1),X,,1 -%x,.)>0
2 2
* If V(X,, 1)~V then
2
(V(XH%)’XH% —Xt> = —nt(V(XH%),Vt) <0

This is why we require Lipschitz continuity
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Optimistic Gradient as Relaxed Projection onto Separating Hyperplane

X1 =X =V, X=Xt - 77t+1V(Xt+%)

t+1

¢ Consider the hyperplan
'H1={XI(V(XH%),XH%—X>=0} Xt
. -tV
* Assumption: (V(XH%),XH% -X,)20 t+1 ChaV(X,.)
* If V(X,,1) = V; then . X
[ ]
(V(XH%)?XH% - Xy) = _nt(V(XH%)?Vt) <0
[ ]

The update step moves the iterate closer to the solutions
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An Intuition Behind Scale Separation of Learning Rates

XZ;% =X{- v g, Xla=X{- n. g (0G+)
Xp1=Xi= % g Xea=Xi- i > 9. (OptDA+)
s=1

e Variational stability
(V(x),x-x,)>0

¢ Stochastic update: relaxation of an approximate
projection step with relaxation factor of the order
of ne1/v: — the ratio 71/~ should go to 0
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Sketch of Proof: Energy Inequality of OptDA+

Ellul sn«:t_lle P (- L) ixt -
M1 Tt Nevr Tl
(linearized regret) - 2(Vi(Xt+%),XZ+% -p')
(negative drift) - Vf (v, gi(XH%)”Q + Vi Ei(Xt_%)‘P)
(variation) - W +7: 1V ei(XH%) — Vi Ki(Xt_%)Hz
(noise) + (1) Llg | + LIE, 1| o +20 gl

(Me+7:)
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Sketch of Proof: Adaptive Learning Rate

Ap=Yllgl?  Ti= 21X - Xl
s=1 s=1

® For some constants ¢y, co,

T ) 1T , N :
ZE[“V(XH%)”%] *3 YE[X: - X[ 1< Y E [\/AZT] +co,
t=1 t=1 i=1
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Sketch of Proof: Adaptive Learning Rate

Ay =Y lgl?, Ty = 21X - Xol?
s=1 s=1

® For some constants ¢y, co,

T T ) N :
ZE[“V(XH%)”% _Z [1X: = Xe1[*] <1 ZE[\/A;]+02,
=1 t=1 i1

OOP—l

Bound from below with A%

N N .
* Multiplicative noise: for some constant C, Y E [\/1 + A’T] <Cand Y E[I'}]<C
i=1 i1
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Sketch of Proof: Adaptive Learning Rate

t . . t . .
= > lgsl?, Ty = > X5 - Xi |
s=1 s=1

® For some constants ¢y, co,

T T ) N :
ZE[“V(XH%)HW _Z (X = Xe1 "] <1 ZE[\/A;]+02,
=1 t=1 i1

OOP—l

Bound from below with A%,

N N .
* Multiplicative noise: for some constant C, Y E [\/1 + A"T] <Cand Y E[I'}]<C
i=1 i1

e Convergence: Apply Robbins-Siegmund'’s theorem and define X? = X! + ni¢! |
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Other Ways to Handle Noise

* Mini-batching: its naive implementation does not work for online learning
1,-1,-1,1,1,1,-1, ...

The player plays
07 -1, -1, 07 07 07 1.

Regret with respect to 0 is (ag +aq4 +...)n>nT/2
® Anchoring: we lose the faster convergence rate under error bound condition
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Toward Robustness Against Noise

All the favorable guarantees break if feedback is noisy

~

* Stochastic estimate ]E[VH%] = V(XH%)

V.- (3¢t+%7_30t+%) with prob. 1/2
" (_¢t+%’9t+%) with prob. 1/2

=

e The two players play optimistic gradient with
decreasing n; = 0.1/\/t

Problem

\ N e —=— 0OG (n:=0.1)

We observe non-convergence and linear regret 06 (1= 0.5/t°%)

=
.0 -75 -50 -25 00 25 50 75 100

Yu-Guan Hsieh

Decision-Making in Multi-Agent Systems

November 7th 2023 63 /51



Toward Robustness Against Noise

All the favorable guarantees break if feedback is noisy

1.5 / re -
* OG+ [x =X, 1] N
2
. \
Xt+% =Xi- m Vt—% \
X1 =X =V,
i 2
With ¢ >,
/
Solution : .
. . \ Noiww T 06 (ne=0.1)
Scale separation of learning rates s S e 0 (=01 m =00
-15 -1.0 -0.5 - 0.0 0.5 1.0 1.5
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L Peecthes

Toward Robustness Against Noise

All the favorable guarantees break if feedback is noisy

® AdaOptDA+ uses learning rates
; 1
Vi =
1
— . 4
(1+ = gi0?)
1
JHZ (il + 1XE - X1, )
Solution
. . . NN
Scale separation of learning rates + Adaptivity s |+ AdaopiDA+
-15 -1.0 -0.5 0.0 0.5 1.0 1.5
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Perspectives

Convergence to Solution Under Multiplicative Noise

°V, 1is (3¢t+%,—39t+%) or (—¢t+%,9t+%) with probability one half for each

t+5

1071 e e 1071 . W

| 1o ;10_16 .~ 0Gn=0.1NT
x = —e— 0G+ y:=0.1n:=0.01

T 10-2t N 10721+ AdaOptDA
_ * AdaOptDA+
1072 107" . AdaOptDA+/2
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
# Iterations # Iterations
Base state X, Played action x; = XH%
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Convergence to Solution Under Additive Noise

° vt+% = (¢)t+% + é.tl?_et.;.% + 6152) where étlagtz NN(O’ 1)

0G ne= 0.1/t
—— OG+ y;=1n=1/t
10"t —+— AdaOptDA
—+— AdaOptDA+
—=— AdaOptDA+/v2

[1Xe = x|
[1xe = x|

100 10t 102 103 10* 10° 10! 102 103 104
# Iterations # Iterations
Base state X, Played action x; = XH%
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