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Multi-Armed Bandits and Uplift Modeling

• Multi-armed bandits [Online]: Learner repeatedly takes actions
(pulls arms) and receives rewards from the chosen actions, with
the goal of maximizing the cumulative rewards
• Uplift modelling [Offline] : Prediction of the incremental impact

(uplift) of each action for better decision making
• In both problems, we aim to find good actions
• Applications: Marketing, Online advertisements, Clinical trials . . .

Uplifting Bandits
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?
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= Total Sales
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Targeted / Influenced

• Consider actions that affect the rewards through multiple
intermediate variables
• The effect of each action is sparse: limited # of affected variables
• All the individual payoffs are observed

Formalisation and Motivating Example

• A set of K actions (marketing strategies) and V set of m
variables (customers)
• In round t, take action at and observes the variables’ payoffs
yt = (yt(i))i∈V drawn from a distribution Dat

• Reward rt =
∑

i∈V yt(i) is summed over all the variables
• Each action a only affects a set Va of La ≪ m variables
• The unaffected variables follow a baseline distribution D0
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TL;DR

We introduce a new multi-armed bandit problem in which each
action only affects the reward through a sparse set of interme-
diate variables, and show that for this problem estimating the
uplift helps in significantly reducing the regret.

Result Overview

• Regret: performance gap between an algorithm and the
algorithm that consistently takes the best action

RegT = r⋆T −
∑T

t=1 rat =
∑

a∈A
∑T

t=1 1{at = a}︸           ︷︷           ︸
Na

T

(r⋆ − ra)︸   ︷︷   ︸
∆a

,

[ra: expected reward of a; r⋆: highest expected reward]
• Define L = maxa∈A La, ∆ = mina∈A∆

a, µa = �ya∼Da[ya], and
assume that the noise in each payoff to be 1-sub-Gaussian

• Consider various setups differing in the learner’s knowledge on
1. Baseline payoffs µ0 = (µ0(i))i∈V = �y0∼D0[y0]
2. The sets of affected variables (Va)a∈A

Algorithm UCB UpUCB (b) UpUCB UpUCB-nAff (b) UpUCB-nAff

Affected known No Yes Yes No No

Baseline known No Yes No Yes No

Regret Bound
Km2

∆

KL2

∆

KL2

∆

From UCB to UpUCB (b)

• Standard UCB (Upper Confidence Bound) bandit algorithm:

- Reward estimate

r̂a
t =
∑t

s=1 rs 1{as = a}/max(1,Na
t )

- Width of confidence interval
ca

t = σ
√

2 log(1/δ′)/Na
t [σ:noise scale]

Confidence

Interval

Expeced Reward Empirical estimate

- Take action with the highest UCB index: Ua
t = r̂a

t + ca
t

- The noise scales in m and the regret is O(Km2 log T/∆)

• UpUCB (b) [Known baseline and known affected variables]
- Apply UCB to transformed rewards r′t =

∑
i∈Vat

(yt(i) − µ0(i))
- This estimates the uplift ra

up = ra − r0 =
∑

i∈Va(µa(i) − µ0(i))

- r′t is L-sub-Gaussian and thus the regret is in O(KL2 log T/∆)

Main Result: Handling Unknown Baseline and
Unknown Affected Variables

With Unknown Baseline: UpUCB

• Key Takeway: compute the differences of the UCB indices

• For i ∈ Va, Ua
t (i) computed from the ob-

served payoffs of i whenever a is pulled
• For baseline, Ua

0(i) is estimated with the
rounds that i is not affected (i.e., i < Vat)
• Pick action with highest uplifting index

τa
t =
∑

i∈Va(Ua
t (i) − U0

t (i))
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With Unknown Affected Variables: UpUCB-nAff (b)

• Regret bound depends on a given L > arg maxa∈A La

• Key Takeaway: identify the affected variables on the fly

• Construct the uplifting index in two steps

1. Identification of affected V̂a
t

2. Optimistic padding with set La
t

• Pick action with highest uplifting index

τa
t =
∑

i∈V̂a
t ∪La

t
(Ua

t (i) − µ0(i)) [
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Identified Padding

The General Case, Lower Bounds, and Extensions

• UpUCB-nAff combines UpUCB and UpUCB-nAff (b) to tackle the
situation where both baseline and affected variables are unknown
• Matching lower bounds justify the necessity of our assumptions
• We also extend the setup to the contextual case where we
associate with each variable a feature vector xt(i)

Numerical Experiments
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Synthetic data
Gaussian noises
K = 10,m = 100, La ≡ 10,∆ ∼ 0.2

0 200 400 600 800 1000
# Iterations

0

1

2

3

4

5

6

7

Re
gr

et

×103

UCB
UpUCB (b)
UpUCB

UpUCB-nAff (b)
UpUCB-nAff
Thompson sampling

Constructed with Criteo Uplift Dataset
Independent Bernoulli noises
K = 20,m = 105, L = 12654,∆ ∼ 30


